摘要
利用Bendixson-Dulac定理,讨论系统在唯一空间周期解的条件,得到如下结果:当(i)x2*[m2-(k+ q)](qλ2- k)(m2k2λ)-1≤成立时,系统在Ω内关于正平衡点是全局稳定的;当成立时,系统在Ω内存在稳定的周期解;当(ii)和(iii) k2(k+ ≥s0δ(m2- k)同时成立时,系统在Ω内存在唯一稳定的周期解.
In this paper, the following nonlinear differential equations are discussed: It is proved that the dynamical system is globally stable on Ω under the following condition: x2*[m2-(k + q)](q2-k)(m2k22)-1 Furthermore, there exists a stable periodic solution on Ω for the system with the other condition: x2*[m2 -(k+q)](q Moreover, if (*) and condition: are satisfied, this solution is unique and stable on Ω.
出处
《系统科学与数学》
CSCD
北大核心
2000年第4期403-411,共9页
Journal of Systems Science and Mathematical Sciences
基金
辽宁省自然科学基金
北京建筑工程学院基础基金资助课题