期刊文献+

紧致超曲面上的谱(英文) 被引量:1

The Spectrum of the Laplace Operation on Compact Hypersurfaces
下载PDF
导出
摘要 设 M是 Sn+1 ( 1 )上的紧致极小超曲面 ,M1 ,n- 1 是 S(n+1 ) ( 1 )上的 Clifford极小超曲面 .若它们的谱相同 ,则它们是等距的 .对于 S(n+1 ) ( 1 )上的紧致常平均曲率超曲面和 H ( r) -环 。 Let M be a compact minimal hypersurface of sphere S n+1 (1). Let M 1,n-1  be a Clifford minimal hypersurface of sphere S n+1 (1). If  Spe c°(M)= Spe c°(M 1,n-1 ), then M is isometric to M 1,n-1 . For a compact hypersurface of sphere S n+1 (1) with constant mean curvature and a H torus, under certain conditions isospetrum implies isometric.
出处 《应用数学》 CSCD 2000年第4期54-59,共6页 Mathematica Applicata
基金 Project Supported by NNSFC( 199710 81) and NECYSFC
关键词 LAPLACE算子 紧致超曲面 紧致常平均曲率 Laplace operator Specturm Isometric
  • 相关文献

参考文献6

  • 1[1]Patodi V. Curvature and the Fundamental Solution of the Heat Operator[J]. J. Indian: Math. Soc.1970,34: 269~285.
  • 2[2]Chern S, Do Carmo M and Kobayashi S[A]. Minimal Submanifolds of a Sphere with Second Fundamental Form of Constant Length. Shiing-Shen Chern selected Paperes[]C. Springer-Verlag, 1978,393~409.
  • 3[3]Shukichi T. A Characterization of the Canonical Spheres by Spectrum[J]. Math. Z., 1980,175:267~274.
  • 4[4]Sakai T. On Eigenvalues of Laplacian and Curvature of Riemannian Manifold[J]. T hoku Math. J.,1971,23: 589~603.
  • 5[5]Alencar H and Do Carmo M. Hypersurfaces with Constant Mean Curvature in Spheres[J]. Proc. Amer. Math. Soc. 1994,120:1223~1229.
  • 6[6]Lawson B. Local Rigidity Theorems for Minimal Hypersurfaces[J]. Ann. Math., 1969,187~197.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部