摘要
讨论了四阶常微分方程边值问题u(4)+βu-αu=(t)f(u),u(0)=u(1)=u(0)=u(1)=0的正解的存在性.利用锥拉伸与锥压缩不动点定理证明了,当f(u)在u=0及u=超线性或次线性增长时,该问题至少存在一个正解.
In this paper,the existence of positive solutions of the fourth-order boundary value problem is discussed. The auther shows that this problem has at least one positive solutions when f(u) is superlinear or sublinear by employing the fixed ponit theorem of cone extension or compression.
出处
《纯粹数学与应用数学》
CSCD
2000年第3期54-58,65,共6页
Pure and Applied Mathematics
基金
甘肃省自然科学基金(ZS991-A25-007-2)
甘肃省教委科研基金(981-30)。
关键词
四阶边值问题
锥拉伸与锥压缩不动点定理
正解
存在性
fourth-order boundary value problem
the fixed ponit theorem of cone extension of compression
positive solution
existence