期刊文献+

一类四阶边值问题正解的存在性 被引量:6

The existence of positive solutions of a fourth-order boundary value problem
下载PDF
导出
摘要 讨论了四阶常微分方程边值问题u(4)+βu-αu=(t)f(u),u(0)=u(1)=u(0)=u(1)=0的正解的存在性.利用锥拉伸与锥压缩不动点定理证明了,当f(u)在u=0及u=超线性或次线性增长时,该问题至少存在一个正解. In this paper,the existence of positive solutions of the fourth-order boundary value problem is discussed. The auther shows that this problem has at least one positive solutions when f(u) is superlinear or sublinear by employing the fixed ponit theorem of cone extension or compression.
作者 李永祥
出处 《纯粹数学与应用数学》 CSCD 2000年第3期54-58,65,共6页 Pure and Applied Mathematics
基金 甘肃省自然科学基金(ZS991-A25-007-2) 甘肃省教委科研基金(981-30)。
关键词 四阶边值问题 锥拉伸与锥压缩不动点定理 正解 存在性 fourth-order boundary value problem the fixed ponit theorem of cone extension of compression positive solution existence
  • 相关文献

参考文献7

  • 1Gupta C. P.. Existence and uniqueness results for the bending of an elastic beam equation at resonance[J],J. Math, Anal. Appl. ,1998,135:208-225.
  • 2Gupta C. P.. Existence and uniqueness theorems for a bending of an elastic beam equation[J]. Appl.Anal. ,1988,26:289-304.
  • 3Aftabizadeh A. R., Existence and uniqueness theorems for fourth-order boundary value problems[J]. J,Math. Anal. Appl, 1986,116:415-426.
  • 4Yang Y.. Fourth-order two-point boundary value problems[J]. Proc. Amer. Math. Soc. ,1988,104:175-180.
  • 5Del PIno M. A. ,Manasevich R. F.. Existence for a tourth-order boundary value problem under a twoparameter nonresonance condition[J]. Proc. Amer. Math. Soc. , 1991,112:81-86.
  • 6De Coster C., Fabrg C. and Munyamarere F.. Nonresonance conditions for fourth-order nonlinear boundary value problems[J], lnternat. J. Math. Math. Sci., 1994,17:725-740.
  • 7Ma R, Y.,Wang H. Y., On the existence of positive solutions of fourth-order ordinary differential equations[J]. Appl, Anal. , 1995,59: 225-231.

同被引文献24

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部