期刊文献+

图像压缩中基于分形维数的小波基选取 被引量:1

Wavelet basis selection based on fractal dimension in image compression
下载PDF
导出
摘要 小波函数具有多样性,采用不同的小波基对图像进行压缩后,重构图像的质量有一定差别.为了选取合适的小波基对图像进行小波变换编码,提出一种基于分形维数的小波基选取的图像压缩方法.通过差分计盒法计算相关图像的分形维数,将图像按照分形维数数值的不同划分为不同类别.选取每类中的代表图像,采用多种小波基,分别用SPECK算法对其压缩处理.根据重构图像峰值信噪比的数值,得出每类图像适合的小波基.实例分析表明,该方法可以在一定程度上提高小波图像编码的峰值信噪比. For the variety of wavelet function,the quality of the reconstructed image compressed by using different wavelet basis is different.In order to select a suitable wavelet basis,a fractal dimension based wavelet basis selection method is proposed.By calculating the fractal dimension of the relevant images with differential box-counting method,the images are divided into different categories according to the fractal dimension value.A representative image for each category is chosen,and SPECK algorithm is used to carry out compression operation under different wavelet bases.Then according to the peak signal to noise ratio of the reconstructed image,a suitable wavelet basis is determined for each image category. Example analysis demonstrate that the method improves the PSNR of wavelet based image coding algorithm.
出处 《东北石油大学学报》 CAS 北大核心 2014年第1期112-116,8,共5页 Journal of Northeast Petroleum University
基金 黑龙江省教育厅科学技术研究项目(12521050) 中国石油科技创新基金研究项目(2012D-5006-0609)
关键词 图像压缩 小波基选取 小波变换 分形维数 编码 image compression wavelet basis selection wavelet transform fractal dimension coding
  • 相关文献

参考文献13

  • 1Cui Yueli, Chen Zhigang, Chen Aihua. Research and progress of image compression coding based on wavelet [C]// ICMENS2011. USA: TTP Publisher, 2011:1352--1355.
  • 2Beladgham M, Bessaid A, Taleb-Ahmed A. Medical image compression using quincunx wavelets and SPIHT coding [J]J. Journal of E leer rical Engineering and Technology, 2012,7 (2) : 264 -- 272.
  • 3Elamaran V, Praveen A. Comparison of DCT and wavelets in image coding[C]// ICCCI 2012. I_JSA: IEEE Publisher, 2012: 1--4.
  • 4Liu Weidong, Feng Guiliang, I.i Zhonghua. Oplimization on wavelet SPECK image coding algorithm [C]// IBI 2011. Berlin Heidel-berg: Springer-Verlag Publisher, 2011:693--699.
  • 5Taubman D S, Marcellin M W. JPEG2000 Image Compression Fundamentals, Standards and Practice [M]. Boston: Kluwer Academic Publisher, 2002: 231--235.
  • 6李战明,迟洋.图像压缩中小波基的选择研究[J].机械与电子,2009,27(9):18-21. 被引量:3
  • 7Thakkar Falgun, Kher Rahul, Modi Chintan. Selecting most favorable basis function for compressing natural and medical images using wavelet transform coding[C]// IPCV 2009.Las Vegas: CSREA Press, 2009:1042--1058.
  • 8Chopra Sanieev, Kaur Harmanp, Kaur Amandeep. Selection of best wavelet basis for image compression at decomposition level 5 [C]// ICCTD 2010. USA: IEEE Publisher, 2010,442--445.
  • 9陈守吉 张立明.分形与图像压缩[M].上海:上海科技教育出版社,1998.59-78.
  • 10Harrouni S. New method for estimating the fractal dimension of discrete temporal signals[J]. IEEE International Symposium on In- dustrial Electronics, 2008 : 2497 -- 2502.

二级参考文献5

共引文献46

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部