期刊文献+

富勒烯和富勒烯衍生物中的Stone-Wales旋转 被引量:1

The Stone-Wales rotation in fullerenes and their derivatives
原文传递
导出
摘要 Stone-Wales旋转是富勒烯异构化的基本方式,了解其特征和规律对于理解富勒烯和富勒烯衍生物的形成至关重要.本文采用密度泛函理论方法系统研究了富勒烯和富勒烯衍生物的Stone-Wales旋转.结果显示,富勒烯异构体趋向于从高B55键(两个五元环共用的边)结构向低B55结构转化,满足独立五元环原则的结构或具有低B55键数的异构体在热力学上更为有利.相反,对于富勒烯衍生物,具有更多B55的异构体不仅在热力学上更有利,而且从动力学角度讲,从满足独立五元环原则的结构向不满足的结构的转变比相反过程更容易.这些结果可以解释目前的相关实验事实,暗示了富勒烯衍生物可能是先衍生化后异构化而形成. Stone-Wales rotation is a fundamental way to facilitate the isomerism of fullerenes and their derivatives which is of key importance on the formation of fullerenes and their derivatives. A systematic study on the Stone-Wales rotation of fullerenes and their derivatives is performed with density functional theory method. The calculated results demonstrate that the isomers with more pentagon-pentagon fusions (B55 bonds) kinetically tend to transfer into the isomers with fewer B55 bonds, even into IPR-satisfying isomers (if possible); meanwhile, the isomers satisfying IPR or with fewer B55 are more advantageous in thermodynamics. For fullerene derivatives, however, the isomers satisfying the IPR or with fewer B55 bonds are usually disadvantageous in energetics; moreover, these isomers kinetically tend to transfer into the ones with more B55 bonds. These calculated findings are agreement well with the experimental observations, and more importantly, the calculations reveal that the fullerene derivatives may be formed via addition outward and transferred into other isomers with more B55 bonds via Stone-Wales rotation.
作者 甘利华 文蓉
出处 《中国科学:化学》 CAS CSCD 北大核心 2014年第3期345-350,共6页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(51272216) 西南大学图书馆基金(Y201106)
关键词 富勒烯 衍生物 Stone-Wales旋转 稳定性 密度泛函理论 fullerene, derivatives, Stone-Wales rotation, stability, density functional theory
  • 相关文献

参考文献15

  • 1Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE, C60: buckminsterfullerene. Nature, 1985, 318: 162-163.
  • 2Fowler PW, Manolopoulos DE. An Atlas of Fullerenes. Oxford: Oxford University Press, 1995.
  • 3Kroto HW. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature, 1987,329: 529-531.
  • 4Bettinger HF, Yakobson BI, Scuseria GE. Scratching the surface of buckminsterfullerene: the barriers for stone wales transformation through symmetric and asymmetric transition states. JAm Chem Soc, 2003, 125: 5572-5580.
  • 5Weng QH, He Q, Liu T, Huang HY, Chen JH, Gao ZY, Xie SY, Lu X, Huang RB, Zheng LS. Simple combustion production and characterization of octahydro[60] fullerene with a non-IPR C60 cage. JAm Chem Soc, 2010, 132: 15093-15095.
  • 6Tan YZ, Liao ZJ, Qian ZZ, Chen RT, Wu X, Liang H, Han X, Zhu F, Zhou SJ, Zheng Z, Lu X, Xie SY, Huang RB, Zheng LS. Two Ih-symmetry-breaking C60 isomers stabilized by chlorination. Nature Mater, 2008, 7: 790-794.
  • 7Jia JF, Wu HS, Xu XH, Zhang XM, Jiao H. Fused five-membered rings determine the stability of CwF60. J Am Chern Soc, 2008, 130: 3985-3988.
  • 8高丽霞,安杰,李树非,潘复生,甘利华.C_(80)X_(12)(X=H,F,Cl,Br)的结构和稳定性[J].中国科学:化学,2011,41(7):1156-1162. 被引量:1
  • 9Tan YZ, Xie SY, Huang RB, Zheng LS. The stabilization of fused-pentagon fullerene molecules. Nature Chem, 2009, I: 450-460.
  • 10Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Peters son GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao 0, Nakai H, Kiene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev 0, Austin AJ, Cammi R, PomeJli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas 0, Malick DK, Rabuck AD, Raghavachari K, oresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L,Fox DJ, Keith T, AI-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, People JA. GAUSSIAN 09, Revision B.03. Pittsburgh PA: Gaussian Int, 2009.

二级参考文献22

  • 1Kroto HW.The stability of the fullerenes Cn,with=24,28,32,36,50,60and70. . 1987
  • 2Campbell EEB,Fowler PW,Mitcheli D,Zerbetto F.Increasing cost of pentagon adjacency for larger fullerenes. . 1996
  • 3Albertazzi E,Domene C,Fowler PW,Heine T,Seifert G,Alsenoy CV,Zerbetto F.Pentagon adjacency as a determinant of fullerene stability. . 1999
  • 4Wang CR,Shi ZQ,Wan LJ,Dunsh L,Shu CY,Tang YL,Shinohara H.C64H4:Production,isolation,and structural characterizations of a stable unconventional fulleride. . 2006
  • 5Xu L,Shao XG,Cai WS.Structure,stability,and thermochemistry of the fullerene derivatives C64X6 (X=H,F,Cl). . 2009
  • 6Tan YZ,Liao ZJ,Qian ZZ,Chen RT,Wu X,Liang H,Han X,Zhu F,Zhou SJ,Zheng ZP,Lu X,Xie SY,Huang RB,Zheng LS.Two I h:symmetry-breaking C60isomers stabilized by chlorination. . 2008
  • 7Tan YZ,Li J,Zhou T,Feng YQ,Lin SC,Lu X,Zhan ZP,Xie SY,Huang RB,Zheng LS.Pentagon-fused hollow fullerene in C78 family retrieved by chlorination. . 2010
  • 8http://www.mathematik.uni-bielefeld.de/-CaGe/ .
  • 9Frisch MJ,Trucks GW,Schlegel HB,Scuseria GE,Robb MA,Cheeseman JR,Montgomery JA,Jr,Vreven T,Kudin KN,Burant JC,Millam JM,Iyengar SS,Tomasi J,Barone V,Mennucci B,Cossi M,Scalmani G,Rega N,Petersson GA,Nakatsuji H,Hada M,Ehara M,Toyota K,Fukuda R,Hasegawa J.GAUSSIAN03,Revision B.03. . 2003
  • 10Diaz-Tendero S,Martin F,Alcami M.Structure and Electronic Properties of Fullerenes C_ (52)~ (2+):Is C_ (52)~ (2+)an Exception to the Pentagon Adjacency Penalty Rule?. ChemPhysChem . 2005

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部