期刊文献+

一种基于MAP的图像超分辨率重建算法 被引量:2

MAP-based of Super-resolution Reconstruction Algorithm
下载PDF
导出
摘要 引入一种基于关键点滤波(Critical-Point Filters,CPF)的图像配准方法,并在最大后验概率(Maximum a Posteriori,MAP)框架下提出一种改进的集投影法(Projections onto ConvexSets,MAP/POCS)混合算法。算法把POCS的残差约束集合加入到基于CPF图像配准的MAP正则算法中,在每次迭代重建中对重建图像的像素点进行约束,充分利用这三种算法的优点。实验结果表明,相比于传统的重建方法,该算法能够更有效地表达视频中的非平移运动,超分辨图像主观质量有明显改善。 An image registration method based on the critical-point filters is introduced in this paper,and an improved MAP/POCS hybrid algorithm based on the framework of MAP has also been proposed,the POCS residual set of constraints is added to the reconstruction algorithm of MAP based on the critical-point filters registration method joined the adaptive regularization parameter so that it can take advantage of the three algorithms. After the test, the results show that compared with the traditional methods, the algorithm of this paper can express the non-translational motion more effectively and the quality of the super-resolution images has been improved obviously.
出处 《电视技术》 北大核心 2014年第7期20-25,共6页 Video Engineering
基金 国家自然科学基金项目(61102135) 中国博士后科学基金项目(2012M511433)
关键词 超分辨率重建 关键点滤波 最大后验概率 MAP POCS super-resolution reconstruction critical-point filters maximum a posteriori MAP/POCS
  • 相关文献

参考文献19

  • 1STARK H, OSKOUI P. High -resolution image recovery from image - plane arrays,using convex projections [ J ]. Journal of the Optical Society of America A ,1989,6( 11 ) :1715-1726.
  • 2SCHULTZ R,STEVENSON R. Extraction of high-resolution frames from video sequences [ J ]. IEEE Trans. Image Processing, 1996, 5 ( 6 ) : 996-1011.
  • 3CHEESEMAN P, KANEFSKY B,KRAFY R,et al. Super-resolved sur- face reconstruction from multiple image [ EB/OL]. [2013-10-15 ]. ht- tp ://hanson. gmu. edu/image, pdf.
  • 4HARDIE R,TUINSTRA T,BOGNAR J,et al. High resolution image re- construction from digital video with global abd non-global scene motion [C ]//Proc. International Conference on Image Processing, 1997. [ S. 1. ] :IEEE Press ,1997 :153-156.
  • 5MICHAEL K,SHEN H,EDMUND Y,et al. A total varitation regulariza- tion based super- resolution reconstruction algorithm for digital video [ EB/OL]. [ 2013-10-15 ]. http ://www. researehgate, net/publication/ 26620262 A_Total_Variation_Regularization_Based_Super - Resolution_ Reconstruetion_Algorithm_for Digital_Video.
  • 6ELAD M, FEUER A. Restoration of a single super-resolution image from several blurred, noisy, and under- sampled measured image [ J ]. IEEE Trans. Image Processing, 1997,6 (12) : 1646-1658.
  • 7BABACAB S,MOLINA R, KATSAGGELOS A. Variational bayesian su- per resolution [ J ]. IEEE Trans. Image Processing, 2011,20 ( 4 ) : 984-999.
  • 8CHAN T, MARQUINA A, MULET P. High order total variation-based image restoration[ J ]. SIAM Journal on Scientific Computing, 2000,22 (2) :503-516.
  • 9MEYER Y. Oscillating patterns in image processing and nonlinear evolu- tion equation[ EB/OL]. [ 2013-10-15 ]. http://dl, acm. org/citation. cfmid = 516207.
  • 10RIEDINGER C,KHEMAKHEM M, CHOLLET G. A study of some su- per resolution techniques in video sequence[ C]//Proc. 2012 6th Inter- national Conference on Sciences of Electronics ,Technologies of Informa- tion and Telecommunications(SETIT). [S. 1. ] :IEEE Press,2012:386- 392.

二级参考文献10

  • 1浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 2Nguyen N,Milanfar P.A computationally efficient image super resolution image reconstruction algorithm.IEEE Transactions on Image Processing,2001;10(4):573-583.
  • 3Vogel C R,Oinaa M E.Fast robust total variation-Based reconstruction of noisy,blurred images.IEEE Transactions on Image Processing,1998; 7(6):813-824.
  • 4Wohlberq B,Rodriguez P.An L1-TV algorithm for deconvolution with salt an pepper noise.IEEE Signal Processing,2009;4(19):20-24.
  • 5Shen H,Lan E,Zhang L.A total variation regularization based super resolution reconstruction algorithm for digital video.EURASIP Journal on Advances in Signal Processing,2007:1-16.
  • 6Elad M,Helor Y.A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur.IEEE Transactions on Image Processing,2001;10(8):1187-1193.
  • 7Park S C,Park M K,Moon G K.Super resolution image reconstruction:a technical overview.IEEE Signal Processing Magazine,2003;20(3):21-36.
  • 8Babacan S D,Molina R,Katsaggelos A K.Total variation super resolution using a variation approach.IEEE International Conference on Image Processing,2008;1(5):641-644.
  • 9Rudin L I,Osher S,Fatimi E.Nonlinear total variation based noise removal algorithms.Physcia D,1992;60(1-4):259-268.
  • 10熊兴华.数字影像质量评价方法评述[J].测绘科学,2004,29(1):68-71. 被引量:34

共引文献14

同被引文献29

  • 1浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 2NIKOLOV M. Model Distortions in Bayesian MAP Recon- struction [J]. Inverse Problems and Imaging, 2007, 1 (2) : 399-422.
  • 3SCHMIDT U, SCHELTEN K, ROTH S. Bayesian Deblurring with Integrated Noise Estlmation[J]. Computer Vision and Pat- tern, 2011, 28 (25) 2625-2632.
  • 4CHEN D Q, CHENG L Z, DU X P. Fast Poissonian Image Segmentation with a Spatially Adaptive Kernel[J]. Optik- International Journal for Light and Eleetran Optics, 2014, 125 (4) 1507-1516.
  • 5BHATNAGAR G, JONATHAN Q M WU. Human Visual Sys- tem Inspired Multi-modal Medical Image Fusion Framework [J]. Expert Systems with Applications, 2013,40(5) : 1708- 1720.
  • 6LEVIN A, WEISS Y, DURAND F. Understanding and Evalu- ating Blind Deeonvolution Algorithms[J]. Expert Systems with Applications, 2009,40(5 ) : 1964-1971.
  • 7SIMCOX T, FIEZ J A. Collecting Response Times Using Ama- zon Mechanical Turk and Adobe Flash[J]. Behavior Research Methods, 2014,48 ( 1 ) 95-111.
  • 8MARTIN D, FOWLKES C, TA1 D. A Database of Human Seg- mented Natural Images and Its Application to Evaluating Seg- mentation Algorithms and Measuring Ecological Statistics[J]. Computer Vision ,2001,2 (8) -416-423.
  • 9MALLAT S,YU G. Super-resolution with sparse mixing es- timators[ J]. IEEE transactions on image processing,2009, 19( 11 ) :2889-2900.
  • 10HEDDE P N, NIENHAUS G U. Super-resolution localiza- tion microscopy with photoactivatable fluorescent marker proteins[J]. Protoplasma, 2014, 251(2): 349-362.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部