期刊文献+

基于Berreman矩阵研究一维掺有各向异性材料缺陷的光子晶体偏振特性 被引量:1

Polarization properties of one-dimensional photonic crystal doped anisotropic material based on Berreman matrix
下载PDF
导出
摘要 为了研究具有各向异性材料缺陷层的光子晶体禁带特性,构造了具有各向异性材料缺陷层(AB)10F(BA)10型一维光子晶体,利用Berreman传输矩阵进行了数值计算。研究发现,随着缺陷层F厚度d的增加,在700~1000 nm禁带中出现的两个缺陷模发生红移,缺陷模透射系数呈阶段性变化。改变缺陷层内单轴晶体方位角θ,X偏振光产生的缺陷模往长波方向移动,透射系数在一定波长范围内规律变化,而Y偏振光产生的缺陷模始终不变。另方位角φ在0~90°范围内变化,则该禁带内产生新的缺陷模。缺陷模的这些特征对全方位过滤器的设计有一定价值。 In order to study the band gap characteristics of photonic crystal doped anisotropic material,an (AB)10F(BA)10 symmetrically structured one-dimensional photonic crystal was designed and its transmission coefficient was numerical calculated by Berreman transmission matrix. It is found that the two defect modes in the 700-1 000 nm photonic band gap exhibits red shift and their transmission coefficient changes periodically with the increase of thickness of the defect layer F. When changing the azimuthal angle θ!of the uniaxial crystal in F, the defect mode generated by X polarized light moves toward long-wavelength direction and its transmission coefficient changes regularly. But the one generated by Y polarized light has no change. When increasing the φduring 0-90°, a new defect mode appears. These properties of defect modes are of significance in application of filter design.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第3期828-832,共5页 Infrared and Laser Engineering
基金 国家自然科学基金(11174151) 南京农业大学青年科技创新基金(KJ2010028)
关键词 光子晶体 缺陷模 Berreman矩阵 单轴晶体 透射率 photonic crystal defect mode Berreman matrix uniaxial crystal transmission coeffiecient
  • 相关文献

参考文献5

二级参考文献41

  • 1Yablonovith E. Inhibited spontaneous emission in solid state physics and electronics[J]. Phys Rev Lett, 1987, 58(20): 2059-2062.
  • 2John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys Rev Lett, 1987, 58(23): 2486-2489.
  • 3Pendry J B, Macklinnon A. Calculation of photon dispersion relation [J]. Phys Rev Lett, 1992, 69(19): 2772-2775.
  • 4Thomas F K, Riehard M DeLaRue. Photonic crystals in the optical regime-past present and future [J]. Progress in Quantum Electronics, 1999, 23: 51-96.
  • 5Weber M F, Stover C A, Gilbert L R, et al. Giant birefrin- gent optics in multilayer polymer mirrors [J]. Science, 2000, 287: 2451-2456.
  • 6Deubel M, Freymann G V. Wegener M, et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications [J]. Nature Mater, 2004, 3(7): 444-447.
  • 7Chu T, Yamada H, Gomyo A, et al. Tunable optical notch filter realized by shifting the photonic band gap in a silicon photonic crystal line-defect waveguide [J]. 1EEE Photon Tech Lett, 2006, 18(24): 2614-2616.
  • 8Seliuta D, Kasalynas I, Macutkevic J, et al. Terahertz sensing with carbon nanotube layers coated on silica fibers: carrier transport versus nanoantenna effects. Appl Phys Lett, 2010, 97:073116.
  • 9Chan W L, Moravec M L, Baraniuk R C, et al. Terahertz imaging with compressed sensing and phase retrieval. Opt Lett, 2008, 33:974-976.
  • 10Liu H B, Plopper G, Earley S, et al. Sensing minute changes in biological cell monolayers with THz differential time- domain spectroscopy. Biosens Bioelectron, 2007, 22:1075-1080.

共引文献19

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部