期刊文献+

搜索引擎用户行为与用户满意度的关联研究 被引量:6

Analysis into the Relationship Between Search Engine User Behavior and User Satisfaction Evaluation
下载PDF
导出
摘要 用户满意度是以用户为中心的搜索引擎性能评价的一个重要分支,区别于传统基于查询与文档相关性的评价方法,基于用户满意度的性能评价能够更加全面、客观地对搜索引擎性能进行评价。该文通过设计搜索实验平台,在尽量不影响用户正常搜索过程的前提下收集用户的搜索行为及其满意度评价,通过用户行为分析的方法挖掘用户群体行为特征与用户查询满意度之间的关联关系。相关结论对提高搜索引擎性能、改善用户查询体验具有一定的参考意义。 As an important category of traditional work in search engine evaluation, user satisfaction evaluation has many differences from traditional relevance measurement evaluation. User satisfaction is a more user-centered evalu- ation, providing a global and systematic evaluation to the performance of search engine. This paper describes the re- lationship between search engine user behavior and user satisfaction evaluation. We designs an experiment with the premise of avoiding impacting user searching experiences, through which we collected query-level explicit judgments of user satisfaction and user behavior log, then analyzes the collected data to elicit valuable conclusions. The findings provide'insights into the improvement of the performance of search engine and the amelioration of user searching ex- perlences
出处 《中文信息学报》 CSCD 北大核心 2014年第1期73-79,共7页 Journal of Chinese Information Processing
基金 国家863高科技项目(2011AA01A205) 自然科学基金(60903107 61073071)
关键词 搜索引擎 用户行为分析 用户满意度 search engine user behavior analysis user satisfaction
  • 相关文献

参考文献4

二级参考文献53

  • 1毛广雄,谭峰.灰色系统分析应用——预测上海房地产市场需求量变化并对其影响因素做关联度分析[J].数学的实践与认识,2005,35(2):32-36. 被引量:28
  • 2王继民,彭波.搜索引擎用户点击行为分析[J].情报学报,2006,25(2):154-162. 被引量:45
  • 3余慧佳,刘奕群,张敏,茹立云,马少平.基于大规模日志分析的搜索引擎用户行为分析[J].中文信息学报,2007,21(1):109-114. 被引量:117
  • 4中国互联网络信息中心.第17次中国互联网络发展状况统计报告(2006年1月)[EB/OL].http://www.cnnic.cn/images/2006/download/2006011701.pdf.2006.
  • 5CNNIC (China Internet Network Information Center).The 25st report in development of Internet in China[R].http://www.cnnic.net.cn/uploadfiles/pdf/2010/1/15/101600.pdf.2010.
  • 6Cockburn,A.and Jones,S.Which way now? Analysing and easing inadequacies in WWW navigation[J].International Journal of Human-Computer Studies,1996,45,105-129.
  • 7Tauscher,L.,& Greenberg,S.How people revisitweb pages:Empirical findings and implications for the design of history systems[J].International Journal of Human-Computer Studies,1997,47,97-137.
  • 8Craig Silverstein,Monika Henzinger,Hannes Marais,et al.Analysis of a very large Web search engine query log[C]//SIGIR Forum,1998,33 (1):6-12.
  • 9Agichtein E,Brill E,Dumais S.Improving web search ranking by incorporating user behavior information[C]//SIGIR06,New York,NY,USA,2006:19-26.
  • 10Dou Z,Song R,Yuan X,Wen J.Are click-through data adequate for learning web search rankings?[C]//Proceeding of the CIKM '08.ACM,New York,NY,2008:73-8.

共引文献142

同被引文献67

  • 1邓朝华,鲁耀斌.电子商务网站用户的感知因素对满意度和行为的影响研究[J].图书情报工作,2008,52(5):70-73. 被引量:12
  • 2余慧佳,刘奕群,张敏,茹立云,马少平.基于大规模日志分析的搜索引擎用户行为分析[J].中文信息学报,2007,21(1):109-114. 被引量:117
  • 3刘群,李素建.基于《知网》的词汇语义相似度计算[J].中文计算语言学,2002,7(2):59-76.
  • 4Wu T, He H, Gu X, et al. An Intelligent Network User Behavior Analysis System Based on Collaborative Markov Model and Distributed Data Processing [C]. In: Proceedings of the 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Whistler, BC, Canada. IEEE, 2013: 221-228.
  • 5Burke R. Hybrid Recommender Systems: Survey and Experiments [J]. User Modeling and User-Adapted Interaction, 2002, 12(4): 331-370.
  • 6Silvestri F. Mining Query Logs: Turning Search Usage Data into Knowledge [J]. Foundations and Trends in InformationRetrieval, 2010, 4(1-2): 1-174.
  • 7Silverstein C, Henzinger M R, Marais H, et al. Analysis of a Very Large Web Search Engine Query Log [J]. ACM Special Interest Group on Information Retrieval (SIGIR), 1999, 33(1): 6-12.
  • 8Eickhoff C, Teevan J, White R, et al. Lessons from the Journey: A Query Log Analysis of Within-session Learning [C]. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining. ACM, 2014: 223-232.
  • 9Park M, Lee T. Understanding Science and Technology Information Users Through Transaction Log Analysis [J]. Library Hi Tech, 2013, 31(1): 123-140.
  • 10Jiang S, Zilles S, Holte R. Query Suggestion by Query Search: A New Approach to User Support in Web Search[C]. In: Proceedings of the IEEE/WlC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, Milan, Italy. IET, 2009, 1 : 679-684.

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部