期刊文献+

Ag/石墨烯复合材料的制备及其对邻氨基苯甲酸甲酯的SERS效应 被引量:2

Preparation of Ag / graphene nanocomposite and its SERS effect on methyl anthranilate
下载PDF
导出
摘要 以还原的氧化石墨烯(r-GO)为前驱物,采用紫外光照还原和水合肼还原两个不同的合成过程,简单制得了没有有机分子存在的Ag沉积r-GO纳米复合材料,其中被还原的Ag呈颗粒状沉积在r-GO片层表面。由于紫外光照还原反应速率较慢,制得的Ag颗粒分散性相对较好,尺寸分布较窄,粒径主要处在25~80nm间;而用水合肼还原,因反应速率较快,获得的Ag颗粒团聚较严重,尺寸分布较宽,粒径主要处在20~130nm间。在此基础上,以一种香料邻氨基苯甲酸甲酯为标记分子,在波长为785nm激光激发下,对获得的一系列含Ag复合材料进行了表面增强Ra-man散射光谱(SERS)测试,结果表明,它们具有非常高的SERS效应,增强因子在10^8附近,其中,用水合肼还原制得的复合材料SERS效应更加明显。 Ag-deposited reduced graphene oxide (r-GO) nanocomposites, without any additional organic mole- cules, were obtained simply through two different preparation processes of ultra-violet reduction and hydrazine reduction. It has been demonstrated that particle-shaped Ag was formed on the surface of r-GO. Using ultra-vi- olet reduction route, due to very slow reduction reaction, Ag particles on the r-GO surface exhibit relatively good dispersion and narrow size distribution with a diameter range of 25-80 nm. However, under hydrazine re- duction, Ag particles show severely aggregation and wide size distribution with a diameter range of 20-130 nm due to fast reduction reaction. Based on the preparations, the surface-enhanced Raman scattering (SERS) spec- troscopes of methyl anthranilate molecules on a series of Ag-deposited r-GO samples were measured in detail, and the results show that such composites have high SERS effect on the organic molecules with an enhancement factor of an order of 10^8 , in which the composite prepared from hydrazine reduction shows obviously higher.
出处 《功能材料》 EI CAS CSCD 北大核心 2014年第4期67-71,75,共6页 Journal of Functional Materials
基金 国家"十二五"支撑计划资助项目(2012BAJ02B08)
关键词 纳米复合材料 石墨烯 Ag-石墨烯 香料分子 SERS效应 nanocomposite graphene Ag-graphene perfume molecules SERS effect
  • 相关文献

同被引文献50

  • 1崔颜,许小燕,任斌,顾仁敖,田中群.Ag核Au壳复合纳米粒子为标记溶胶免疫检测的SERS研究[J].光散射学报,2005,17(4):319-322. 被引量:6
  • 2陈永胜,黄毅.石墨烯-新型二维碳纳米材料[M].北京:科学出版社,2013.
  • 3Afaf E1-Ansary, Layla M Faddah. Nanoparticles as biochemical sen- sors[J]. Nanotechnol Sci Appl, 2010,3 : 65.
  • 4Stephen D Hudson, George Chumanov. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy)[J]. Analy Bioanal Chem, 2009,394 (3) ; 679.
  • 5Ralph A Tripp, Richard A Dluhy, Zhao Yiping. Novel nanostruc- ture for SERS biosensing[J]. Nano Today,2008,3(3):31.
  • 6James M Sylvia, James A Janni, Klein J D, et al. Surface-enhancedRaman detection o{ 2,4-dinitrotoluene impurity vapor as a marker to locate tandmines[J]. Anal Chem, 2000,72(23) ,, 5834.
  • 7Piorek B D, Lee S J, Santiago J G, et al. Free-surface microfluidie control of surfaced-enhanced Raman spectroscopy for the optimized detection of airborne molecules[J]. PNAS,2007,104 : 18898.
  • 8Walter F Paxton, Samuel L Kleinman, Ashish N Basuray, et al. Surface-enhanced Raman spectroeleetrochemistry of TTF-modified self-assembled monolayers[J]. J Phys Chem Lett,2011,2(10):1145.
  • 9Cortes E, Etchegoin P G, Le Ru E C, et al. Monitoring the electro- chemistry of single molecules by surface-enhanced Raman spectros- copy[J]. J Am Chem Soe,2010,132(51):18034.
  • 10Sun M, Zhang Z, Zheng H, etal. In-situ plasmon-driven ehemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy [J]. Sci Rep,2012,2:647.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部