期刊文献+

张量分析和多项式优化的若干进展 被引量:5

Some advances in tensor analysis and polynomial optimization
下载PDF
导出
摘要 张量分析(也称多重数值线性代数)主要包括张量分解和张量特征值的理论和算法,多项式优化主要包括目标和约束均为多项式的一类优化问题的理论和算法.主要介绍这两个研究领域中若干新的研究结果.对张量分析部分,主要介绍非负张量H-特征值谱半径的一些性质及求解方法,还介绍非负张量最大(小)Z-特征值的优化表示及其解法;对多项式优化部分,主要介绍带单位球约束或离散二分单位取值、目标函数为齐次多项式的优化问题及其推广形式的多项式优化问题和半定松弛解法.最后对所介绍领域的发展趋势做了预测和展望. Tensor analysis (also called as numerical multilinear algebra) mainly in- cludes tensor decomposition, tensor eigenvMue theory and relevant algorithms. Polynomi- al optimization mainly includes theory and algorithms for solving optimization problems with polynomial objects functions under polynomial constrains. This survey covers the most of recent advances in these two fields. For tensor analysis, we introduce some prop- erties and algorithms concerning the spectral radius of nonnegative tensors' H-eigenvalue. We also discuss the optimization models and solution methods of nonnegative tensors' largest (smallest) Z-eigenvalue. For polynomial optimization problems, we mainly in- troduce the optimization of homogeneous polynomial function under the unit spherical constraints or binary constraints and their extended problems, and semidefinite relax- ation methods for solving them approximately. We also look into the further perspective of these research topics.
出处 《运筹学学报》 CSCD 北大核心 2014年第1期134-148,共15页 Operations Research Transactions
基金 国家自然科学基金(Nos.11271206 11171180 11171083)
关键词 张量 特征值 谱半径 多项式优化 算法 半定松弛 近似算法 tensor, eigenvalue, spectral radius, polynomial optimization, algorithm,semidefinite relaxation, approximation algorithm
  • 相关文献

参考文献5

二级参考文献15

  • 1HUANG Yongwei1,& ZHANG Shuzhong2 1Department of Electronic and Computer Engineering,The Hong Kong University of Science and Technology,Kowloon,Hong Kong,China,2Department of Systems Engineering and Engineering Management,The Chinese University of Hong Kong,Shatin,Hong Kong,China.Approximation algorithms for indefinite complex quadratic maximization problems[J].Science China Mathematics,2010,53(10):2697-2708. 被引量:3
  • 2Lindstrom P, Duchaineau M. Factoring Algebraic Error For Relative Pose Estimation, Technical Report LLNL-TR-411194-DRAFT, March 2009.
  • 3Qi L Q. Eigenvalues of a Real Supersymmetric Tensor. J. Symbolic Computation, 2005, 40:1302-1324.
  • 4Wang Y J, Qi L Q. On the Successive Supersymmetric Rank-1 Decomposition of Higher-order Supersymmetric Tensors. Numerical Linear Algebra and Applications, 2007, 14:503-519.
  • 5Ling C, Nie J W, Qi L Q, Ye Y Y, Bi-quadratic Optimization over Unit Spheres and Semidefinite Programming Relaxations, SIAM J. Optimization, 2009, 20:1286-1310.
  • 6Nesterov Y. Squared Functional Systems and Optimization Problems, In: High Performance Optimization, H. Frenk, K. Roos, T. Terlaky, and S Zhang, eds., Kluwer, Dordrecht, 2000.
  • 7Kofidis E, Regalia P A. On the Best Rank-1 Approximation of Higher-order Supersymmetric Tensors. SIAM J. Matrix Analysis & Applications, 2002, 23:863-884.
  • 8Lasserre J B. Global Optimization with Polynomials and the Problem of Moments. SIAM J. Optimization, 2001, 11:796-817.
  • 9Parrilo P A. Semidefinite Programming Relations for Semialgebraic Problems. Mathematical Programming, 2003, 96(B): 293-320.
  • 10Golub G H, Van Loan C F. Matrix Computations (3rd edn). Baltimore: Johns Hopkins University Press, MD, 1996.

共引文献15

同被引文献29

  • 1Qi L. Eigenvalues of a real supersymmetric tensor[J]. Journal of Symbolic Computation, 2005, 40:1 302-1 324.
  • 2Lim L H, Singular values and eigenvalues of tensors: a variational approach: CAMSAP 2005: proceedings of the IEEE International Workshop on Computational Advances in Multi-sensor Adaptive Processing, Mexico, Dec 13- 15, 2005[C]. Mexico: [s.n.], 2005.
  • 3Chang K C, Pearson K, Zhang T. Perron Frobenius Theorem for nonnegative tensors commun[J]. Math Sci, 2008, 6: 507-520.
  • 4Chang K C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors[J]. Journal of Mathematical Analysis and Applications, 2009, 350: 416-422.
  • 5Yang Y, Yang Q. Further results for Perror-Frohenus Theorem for nonnegatve terLsors[J]. SIAM J Matrix Aal Appl, 2010, 31. 2 517-2 530.
  • 6Yang Q, Yang Y. Further results for Perron-Frobenius Theorem for nonnegative tensors I [J]. SIAM J Matrix Anal Appl, 2011, 32:1 236-1 250.
  • 7Yang Y, Yang Q. Singular values of nonnegative rectangular tensors[J]. Front Math China, 2011, 6: 363-378.
  • 8Friedland S, Gaubert S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions[J]. Linear Algebra Appl, 2013, 438: 738-749.
  • 9杨宇宁.Eigenvaluesoftensorsandrelatedpolynomialoptimizationproblems[D].天津:南开大学数学科学学院,2013.
  • 10杜守强,高岩.求解垂直互补问题的参数牛顿法(英文)[J].运筹学学报,2009,13(1):22-28. 被引量:1

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部