期刊文献+

组合优化若干经典问题新进展 被引量:6

New perspectives of several fundamental problems in combinatorial optimization
下载PDF
导出
摘要 组合优化是20世纪中后期发展起来的一个运筹学与计算机科学交叉学科分支,研究具有离散结构的优化问题解的性质和求解方法.由于不同离散问题的结构差异,出现了各种各样的研究手段和技巧.针对组合优化的若干经典问题,简述了算法和复杂性理论的研究进展. Combinatorial optimization, as an interdiscipline of operations research and computer science, has been developing since the mid-20th century. It characters opti- mization problems with discrete structures, and explores their solution methods. Due to the structural divergence in discrete problems, there has been a wide variety of method- ologies and techniques. In this paper, we briefly introduce a number of fundamental problems in combinatorial optimization, and present the recent achievements together with some open problems.
出处 《运筹学学报》 CSCD 北大核心 2014年第1期149-158,共10页 Operations Research Transactions
基金 国家自然科学基金(Nos.11222109 11371001 11271325)
关键词 组合优化 计算复杂性 近似算法 多面体组合 拟阵 combinatorial optimization, computational complexity, approximationalgorithms, polyhedral combinatorics, matriod
  • 相关文献

参考文献36

  • 1Schrijver A. Combinatorial Optimization: Polyhedra and Efficiency [M]. Berlin: Springer- Verlag, 2003.
  • 2Korte B, Vygen J. Combinatorial Optimization: Theory and Algorithms [M]. Berlin: Springer- Verlag, 2012.
  • 3Vazirani V V. Approximation Algorithms [M]. Berlin: Springer-Verlag, 2001.
  • 4Williamson D P, Shmoys D B. The Design of Approximation Algorithms [M]. New York Cambridge University Press, 2011.
  • 5Arora S, Barak B. Computational Complexity: A Modern Approach [M]. New York: Cambridge University Press, 2009.
  • 6Johnson D S. Near-optimal bin packing algorithms [D]. Cambridge: Massachusetts Institute of Technology, 1973.
  • 7越民义.A SIMPLE PROOF OF THE INEQUALITY FFD (L)≤11/9 OPT(L)+1, ■L FOR THE FFD BIN-PACKING ALGORITHM[J].Acta Mathematicae Applicatae Sinica,1991,7(4):321-331. 被引量:6
  • 8Dosa G, Li R H, Han X, et al. Tight absolute bound for first fit decreasing bin-packing FFD(I) ll/9OPT(L) + 6/9 [J]. Theoretical Computer Science, 2013, 510: 13-61.
  • 9Dosa G, Sgall J. First fit bin packing: a tight analysis [C]//Proceedings of the 30th International Symposium on Theoretical Aspects of Computer Science ( STACS), 2013, 538-549.
  • 10Selden S S. On the online bin packing problem [J]. Journal of the ACM, 2002, 49: 640-671.

共引文献5

同被引文献56

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部