期刊文献+

碳纳米管在铀的热电离质谱测量中的应用研究 被引量:5

Application of Carbon Nanotubes in the Measurement of Uranium by TIMS
下载PDF
导出
摘要 为了研究不同规格碳纳米管对U+发射的影响,以碳纳米管(CNTs)作为铀测量的发射剂,通过考察它对离子流信号强度、稳定性以及235 U/238 U丰度比测量结果的影响,研究了碳纳米管对铀同位素丰度测量的作用,并对比了石墨、蔗糖以及不同规格碳纳米管的离子发射性能。结果表明,碳纳米管作为发射剂可显著提高U+产额、离子流信号稳定性以及测量精度,其中CNTs-3的效果相对最优,可使U+产额提高3倍以上。以CNTs-3作为发射剂,铀涂样量25ng时,235 U/238 U相对标准偏差小于0.2%(n=18);涂样量5ng时,235 U/238 U相对标准偏差为0.5%(n=18)。 Carbon nanotubes (CNTs) were used as the ion emission promoter for increasing the ionization yield of uranium for the measurement of uranium isotopes by thermal ionization mass spectrometry (TIMS).The emission effect of the carbon nanotubes was studied by researching the change of ion intensity,signal stability and measurement precision.A comparative study of the emission performances of graphite,sucrose and three kinds of carbon nanotubes with different diameters was carried out.The results suggest that carbon nanotubes loaded with the uranium sample can significantly improve U+ yield,signal stability and measurement precision.The ion emission capacity of CNTs-3 is the best among all the carbon sources investigated in this work.The ion yield of U+ is increased more than three times when CNTs-3 as ion emission promoter.Samples with 25 ng and 5 ng uranium are measured using CNTs-3 as ion emission promoter.The results show that the relative standard deviations (RSD) of 235U/238U is about 0.2% and 0.5% (n=18),respectively.
出处 《质谱学报》 EI CAS CSCD 北大核心 2014年第2期132-137,共6页 Journal of Chinese Mass Spectrometry Society
关键词 热电离质谱(TIMS) 离子发射剂 铀同位素 碳纳米管 thermal ionization mass spectrometry(TIMS) ion emission promoter uranium isotope carbon nanotube
  • 相关文献

参考文献16

二级参考文献189

共引文献119

同被引文献42

  • 1郑磊,支霞臣,靳永斌.负热电离质谱法测量Os同位素组成的质量分馏校正[J].质谱学报,2004,25(4):193-197. 被引量:17
  • 2邓中国.扩散型表面电离源及其在铀、钚和镎等元素质谱分析中的应用[J].原子能科学技术,1989,23(4):70-75. 被引量:6
  • 3NEBEL-JACOBSEN Y, SCHERER E E, MUNKER C, et al. Separation of U, Pb, Lu, and Hf from single zircons for combined U-Pb dating and Hf isotope measurements by TIMS and MC-ICP-MS[J]. Chemical Geology, 2005, 220(1) : 105-120.
  • 4KRAIEM M, MAYER K, GOUDER T, et al. Experimental investigation of the ionization mechanisms of uranium in thermal ionization mass spectrometry in the presence o{ carbon[J]. International Journal of Mass Spectrometry, 2010, 289(2): 108-118.
  • 5ZHAI L H, DENG H, WEI G Y, et al. A new ohmic heating based thermal ionization cavity source for mass spectrometry[J]. International Journal of Mass Spectrometry, 2001, 305 (1) : 45- 49.
  • 6WEI H Z, JIANG S Y, HEMMING N G, et al. An improved procedure for separation/purifica- tion of boron from complex matrices and high- precision measurement of boron isotopes by posi- tive thermal ionization and multicollector induc- tively couples plasma mass spectrometry[J] Ta- lanta, 2014, 123: 151-160.
  • 7L1CF, LI X H, LI QL, et al. Yang rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single step separation scheme[J]. Analytica Chimica Acta, 2012, 727: 54-60.
  • 8WAYNE D M, HANG W, MCDANIEL D K, et al. A linear time-of-flight mass analyzer for thermal ionization cavity mass spectrometry[J]. Spectrochimica Acta Part B, 2001, 56 (7): 1 175-1 194.
  • 9WAYNE D M, HANG W, MCDANIEL D K, et al. The thermal ionization cavity (TIC) source: Elucidation of possible mechanisms for enhanced ionization efficiency [J]. International Journal of Mass Spectrometry, 2002, 216 (1): 41-57.
  • 10GUOC, HUANG Z, GAO W, et al. A home made high-resolution orthogonal-injection time- of-flight mass spectrometer with a heated capil- lary inlet[J]. Review of Scientific Instruments, 2008, 79(1) 013109-1-013109-6.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部