期刊文献+

粒子群进化学习自适应双通道脉冲耦合神经网络图像融合方法研究 被引量:15

A Novel Image Fusion Method Using Self-adaptive Dual-channel Pulse Coupled Neural Networks Based on PSO Evolutionary Learning
下载PDF
导出
摘要 针对双通道脉冲耦合神经网络图像融合方法中参数选取不易确定之挑战,提出了一种基于进化学习的自适应双通道脉冲耦合图像融合方法.通过引入自适应学习能力的进化学习算法和构建新的优化目标对双通道脉冲耦合神经网络模型参数来进行优化,提出的新算法能够有效地找到双通道脉冲耦合神经网络模型的近似最优参数,克服了经典双通道脉冲耦合神经网络图像融合方法需要人工交互穷举尝试不同参数来获取较优参数之缺点.实验研究亦表明了上述优点. A novel method for self-adaptive dual-channel pulse coupled neural networks (DC-PCNN) based on PSO evolu-tionary learning is proposed in order to overcome the difficulty of parameters selection of DC-PCNN .In this study an evolutionary learning algorithm and a new optimization criterion are proposed to optimize the parameters of PCNN for image fusion .In contrast with classical DC-PCNN method that needs to try different parameters settings manually ,the proposed method can find the optimal parameters adaptively .Experimental results obtained on benchmark databases verify the above advantages .
作者 李奕 吴小俊
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第2期217-222,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60973094 No.61103128) 教育部科技研究重大项目(No.311024) 111引智计划(No.B12018)
关键词 双通道脉冲耦合神经网络 进化学习 多准则目标函数 图像融合 dual-channel PCNN evolutionary learning multi-criteria objective function image fusion
  • 相关文献

参考文献20

  • 1POHL C, Van Genderen JL. Multisensor image fusion in remote sensing: concepts, methods and applications [ J ]. International Journal of Remote Sensing, 1998,19(5) :823 - 854.
  • 2Carper W J, Lillesand T M, Kiefer R W. The use of intensity- hue-saturation transformations for merging SPOT panchromatic and multispectral image data [ J ]. Pliotogramm Eng Remote Sensing, 1990,56(4) :459 - 467.
  • 3ChavezJr P S, Sides S C, Anderson J A. Comparison of three difference methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic [ J ]. Photogramm Eng Remote Sensing, 1991,57(3) :295 - 303.
  • 4Toet A. Multiscale contrast enhancement with applications to image fusion[ J ]. Optical Engineering, 1992, 31 ( 5 ): 1026 - 1031.
  • 5Chipman L J, Orr T M, Graham L N. Wavelets and image fu- sion[ A ]. Proc of lnt Conf on Image Processing [ C ]. Los Alamitos: IEEE Computer Society, 1995. 248 - 251.
  • 6Li H, Manjunath BS, Mitra S. Multisensor image fusion using the wavelet transform [ J ]. Graphical Models and Image Pro- cess, 1995,57(3) :235 - 245.
  • 7Li X,He M,Roux M. Multifocus image fusion based on redun- dant wavelet transform[ Jl. Image Processing, IET, 2010,4 ( 4 ) : 283 - 293.
  • 8Chai Y, Li H F, Qu J F. Image fusion scheme using a novel du- al-channel PCNN in lifting stationary wavelet domain[ J]. Op- tics Communications, 2010,283 (19) : 3591 - 3602.
  • 9PieUa G. A general framework for multiresolution image fu- sion: from pixels to regions [ J ]. Information Fusion, 2003,4 (4) :259 - 280.
  • 10QU Xiao-Bo,YAN Jing-Wen,XIAO Hong-Zhi,ZHU Zi-Qian.Image Fusion Algorithm Based on Spatial Frequency-Motivated Pulse Coupled Neural Networks in Nonsubsampled Contourlet Transform Domain[J].自动化学报,2008,34(12):1508-1514. 被引量:121

二级参考文献31

共引文献135

同被引文献129

引证文献15

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部