摘要
针对双通道脉冲耦合神经网络图像融合方法中参数选取不易确定之挑战,提出了一种基于进化学习的自适应双通道脉冲耦合图像融合方法.通过引入自适应学习能力的进化学习算法和构建新的优化目标对双通道脉冲耦合神经网络模型参数来进行优化,提出的新算法能够有效地找到双通道脉冲耦合神经网络模型的近似最优参数,克服了经典双通道脉冲耦合神经网络图像融合方法需要人工交互穷举尝试不同参数来获取较优参数之缺点.实验研究亦表明了上述优点.
A novel method for self-adaptive dual-channel pulse coupled neural networks (DC-PCNN) based on PSO evolu-tionary learning is proposed in order to overcome the difficulty of parameters selection of DC-PCNN .In this study an evolutionary learning algorithm and a new optimization criterion are proposed to optimize the parameters of PCNN for image fusion .In contrast with classical DC-PCNN method that needs to try different parameters settings manually ,the proposed method can find the optimal parameters adaptively .Experimental results obtained on benchmark databases verify the above advantages .
出处
《电子学报》
EI
CAS
CSCD
北大核心
2014年第2期217-222,共6页
Acta Electronica Sinica
基金
国家自然科学基金(No.60973094
No.61103128)
教育部科技研究重大项目(No.311024)
111引智计划(No.B12018)