期刊文献+

基于全变分的全向图像稀疏重构算法 被引量:7

Sparse Reconstruction for Omnidirectional Image Based on Total Variation
下载PDF
导出
摘要 折反射全向成像由于曲面镜的反射作用,导致全向图像存在严重变形,传统的梯度计算方法在全向图像中不能很好地符合折反射成像的特点.为了从压缩采样数据快速有效地重构全向图像,提出了一种结合全向图像特征的全变分模型——全向全变分,并在基于TV范数进行全向图像重构时,采用全向全变分作为目标函数,进行模型的求解.实验结果验证了本文算法的有效性和可行性,其重构结果的主客观效果明显优于传统TV模型. Because of the distortions produced by the reflection of a mirror ,catadioptric omnidirectional images cannot be processed similarly to classical perspective images .In this paper ,we propose to define a new model named omnidirectional total variation (Omni-TV) ,which reflects the omnidirectional image structure features .In order to reconstruct the images from compres-sive samples ,the Omni-TV is used as the subject function during the image reconstruction .The simulation results show that the om-nidirectional images could be reconstructed effectively and accurately .Comparing with classical TV minimization model ,the images , which are recovered based on Omni-TV model ,can provide higher quality both in subjective evaluation and objective evaluation .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第2期243-249,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61275016 No.61271438)
关键词 折反射全向成像 压缩感知 图像重构 TV范数 catadioptric omnidirectional imaging compressed sensing image reconstruction TV norm
  • 相关文献

参考文献25

  • 1Boult T E, Gao X, Micheals R, et al. Omni-directional visual surveiUanceE J]. Image and Vision Computing, 2004, 22 ( 7 ) : 515 - 534.
  • 2杨鹏,高晶,刘作军,万文献.基于全景与前向视觉的足球机器人定位方法研究[J].控制与决策,2008,23(1):75-78. 被引量:10
  • 3Ikeuchi K, Sakauchi M, Kawasaki H, et al. Constructing virtual cities by using panoramic images [ J ]. International Journal of Computer Vision, 2004,58(3 ) :237 - 247.
  • 4Donoho D L. Compressed sensing [ J ]. 1EEE Transactions on Information Theory ,2006,52(4) : 1289 - 1306.
  • 5Cand's E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplele frequency information [ J ]. IEEF, Transactions on Information Theory, 2006,52(2) :489 - 509.
  • 6Baraniuk R, Steeghs P. Compressive radar imaging[ A]. Pro- ceedings of IEEE 2007 Radar Conference [ C ]. Waltham, Mas- sachusetts,2007. 128 - 133.
  • 7Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI[ J ]. IEEE Signal Processing Magazine, 2008,25 (2) : 72 - 82.
  • 8Ma J. Single-pixel remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2009,6 ( 2 ) : 199 - 203.
  • 9石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 10Romberg J. Imaging via compressive sampling[ J]. IEEE Sig- nal Processing Magazine,2008,25(2) : 14 - 20.

二级参考文献210

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2段华,赵东标.基于立体视觉的移动机器人导航方法的研究[J].控制与决策,2006,21(6):709-713. 被引量:8
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献969

同被引文献80

  • 1王睿,赵方,彭金华,罗海勇,陆波,陆涛.基于WI-FI和蓝牙融合的室内定位算法[J].计算机研究与发展,2011,48(S2):28-33. 被引量:31
  • 2彭启民,贾云得.基于小波变换的全向图像分辨率增强方法[J].电子学报,2004,32(11):1875-1879. 被引量:9
  • 3QIN Chuan, WANG Shuo-zhong, ZHANG Xin- peng. Simultaneous inpainting for image structure and texture using anisotropie heat transfer model [J]. Multimedia Tools and Applications, 2012, 56(3) :469-483.
  • 4Chan R H, YANG Jun-feng, YUAN Xiao-ming. Alternating direction method for image inpainting in wavelet domains [J]. SIAM Journal on Imaging Sciences, 2011, 4(3) : 807-826.
  • 5LI Sheng-feng, WANG Ru-jing, XIE Jin, et al. Exemplar image inpainting by means of curvature- driven method [C] // Proceedings -- 2012 International Conference on Computer Science and Electronics Engineering, ICCSEE 2012. Piscataway: IEEE Computer Society, 2012:326-329.
  • 6Paul G, Cardinale J, Sbalzarini I F. Coupling image restoration and segmentation: A generalized linear model/Bregman perspective [J].International Journal of Computer Vision, 2013, 104(1) :69-93.
  • 7权双燕,曹阳.插值法的应用与研究[J].科技信息,2007(36):73-74. 被引量:14
  • 8Cand~s E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 9Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 10Lustig M, Donoho D L, and Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR Imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部