期刊文献+

一种基于GNC和增广拉格朗日对偶的非凸非光滑图像恢复方法 被引量:5

A Method Based on the GNC and Augmented Lagrangian Duality for Nonconvex Nonsmooth Image Restoration
下载PDF
导出
摘要 逐步非凸方法(GNC)和增广拉格朗日对偶在非凸非光滑图像恢复中有较高的恢复性能.然而分别使用这两种方法时GNC不能够保证全局收敛,增广拉格朗日对偶不能获得有效的初始值.为克服上述缺陷,本文通过转换原始问题为等式约束优化问题推出了一种基于GNC和增广拉格朗日对偶的组合图像恢复方法,并对其收敛性严格证明.该方法不仅可以获得有效的初始值,同时不要求问题具有凸性和光滑性.更多地,一个自适应能量函数通过对偶迭代而得到.实验结果表明推出的方法可以有效地提高图像恢复质量和算法效率. The graduated nonconvex method (GNC) and augmented Lagrangian duality have superior restoration performance for nonconvex nonsmooth image restoration .However ,the global convergence of the general GNC could not be guaranteed and an effective initial value could not be obtained for the augmented Lagrangian duality when they are used separately .To overcome these drawbacks ,we propose a hybrid method based on the GNC and augmented Lagrangian duality by transforming the original problem into equality constrained optimization ,then its dual convergence has been strictly proven .The proposed method could get an effec-tive initial value and does not require the convexity and smoothness of the underlying problem .Moreover ,an adaptive energy func-tion is generated by the dual iterations .Experimental results show that the proposed method could enhance the quality of restored im-ages and the efficiency of algorithm effectively .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第2期264-271,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61273311 No.61173094)
关键词 非凸非光滑 惩罚函数 增广拉格朗日对偶 逐步非凸方法 图像恢复 nonconvex nonsmooth potential function augmented Lagrangian duality graduated nonconvex method(GNC) image restoration
  • 相关文献

参考文献19

  • 1R C Gonzalez, R E Woods. Digital Image Processing[M]. 2th ed, London: Prentice Hall, 2002.
  • 2刘红毅,韦志辉,张峥嵘.自适应非局部patch正则化图像恢复[J].电子学报,2012,40(3):512-517. 被引量:5
  • 3孙玉宝,韦志辉,吴敏,肖亮,费选.稀疏性正则化的图像泊松去噪算法[J].电子学报,2011,39(2):285-290. 被引量:20
  • 4A M Bruckstein, D L Donoho, M Eiad. From sparse solutions of systems of equations to sparse modeling of signals and im- ages[ J] .SIAM Review,2009,51 ( 1 ) :34 - 81.
  • 5F H Clarke. Optimization and Nonsmooth Analysis [ M]. New York:John Wiley and Sons, 1983.
  • 6J V Burke,D Henrion, A S Lewis,M L Overton. Stabilization via nonsmooth, nonconvex op "tlmization[ J], IEEE Transation on Automatic Control,2006,51 ( 11 ) : 1760 - 1769.
  • 7L Bedini, I Gerace, A Tonazzini. A GNC algorithm forcon- strained image reconstruction with continuons-value line pro- cess[ J]. Pattern Recognition Letters, 1994,15(9) : 907 - 918.
  • 8M Nikolova. Markovian reconstruction using a GNC approach [ J ]. IEEE. Transation on Image Processing, 1999,8 (9) : 1204 - 1220.
  • 9M Nikolova, K N Michael, C P Tam. Fast nonconvex nosmooth minimization methods for image restoration and reconstruction [ J]. IEEE Transation on Image Processing, 2010,19(12) :3073 - 3088.
  • 10R N Gasimov. Augmented Lagrangian duality and nondiffer- entiable optimization methods in nonconvex programming[ J]. Journal of Global Optimization, 2002,24(2 ) : 187 - 203.

二级参考文献42

  • 1F J Anscombe. The transformation of Poisson, binomial and negative-binomial data[ J ]. Biomelrika, 1948, 35 ( 3 ) : 246 - 254.
  • 2B Zhang,M Fadili,J-L Starck. Wavelets,ridgelets and curvelets for poisson noise removal [ J ]. IEEE Trans Image Process, 2008,17(7) : 1093 - 1108.
  • 3E D. Kolaczyk. Nonparametxic estimation of intensity maps us ing Haar wavelets and Poisson noise characteristics[ J]. The As trophysical Journal, 2000,534( 1 ) :490- 505.
  • 4A Bijaoui, G Jammal. On the distribution of the wavelet coeffi cient for a Poisson noise[ J] .Signal Process,2001,81 (9) : 1789 -1800.
  • 5R Nowak, E Kolaczyk. A statistical multiscale framework for poisson inverse problems[ J]. IEEE.Transactions on Information Theory,2000,46(5) : 1811 - 1825.
  • 6R WiUett, R Nowak. Fast multiresolufion photon-limited image reconstruction[ A]. Proc IEEE. hat Sym Biomedical Imaging (ISBI '04) [C]. Arlington: IEEE Press,2004.1192 - 1195.
  • 7S Setzer. Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage[ A]. Lecture Notes In Computer Science [ C]. Voss: Springer-Verlag , 2(109.5567.464 - 476.
  • 8Stanley Osher, Martin Burger, et al. An iterative reguladzafion method for total variation-based image restoration[ J]. Mulli- scale Model, Simul, 2005,4 (2) : 460 - 489.
  • 9S Osher, Y Mao, et al. Fast linearized Bregman iteration for compressive sensing and sparse denoising[ J]. Communications in Mathematical Sciences, 2010,8( 1 ) : 93 - 111.
  • 10M Fadili, J-L Starck, F. Murtagh. Inpainting and zooming us ing sparse representations[ J]. The Computer Journal,2009,52 (1):64-79.

共引文献32

同被引文献16

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部