期刊文献+

Ti和/或Nb对高温合金25Cr37Ni0.6Nb组织和力学性能的影响

Effect of Ti and/or Nb on Structure and Mechanical Properties of High Temperature Alloy 25Cr37Ni0.6Nb
下载PDF
导出
摘要 研究了150 kg真空感应炉冶炼并轧成30 mm板的0.05C-25Cr-37Ni-0.6Nb (0.6Nb),0.05C-25Cr-37Ni-0.6Nb-0.6Ti(0.6Nb-0.6Ti)和0.05C-25Cr-37Ni-1.8Nb(1.8Nb)3组合金1 160~1 220℃1h空冷固溶处理的组织和性能.结果表明,与0.6Nb合金相比加Ti的(0.6Nb-0.6Ti)合金的晶粒明显粗化,析出相主要为微米级Ti(CN),室温强度降低,760℃蠕变性能降低;增加Nb含量的1.8Nb合金的晶粒细化,析出相主要为纳米级Nb(CN),室温强度和蠕变性能没有明显变化. The structure and properties of three alloys 0. 05C-25Cr-37Ni-O. 6Nb(0. 6Nb), 0.05C-25Cr-37Ni-0. 6Nb- 0. 6Ti(0. 6Nb-O. 6Ti) and 0. 05C-25Cr-37Ni-1.8Nb(1.8Nb) melted by 150 kg vacuum induction furnace, rolled to 30 mm plate and solid-solution-treated at 1 160-1 220℃ for 1 h, air cooling have been studied. Results show that as compared with 0. 6Nb alloy, the grains in 0. 6Nb-0. 6Ti alloy added Ti obviously coarsen, the main precipitates are micrometer-scale Ti( CN), the ambient strength and creep behavior at 760 ℃ of 0. 6Nb-0. 6Ti alloy decrease; the 1.8Nb alloy got a raise in Nb content, the grains fine, the main precipitates are nanometer-scale Nb(CN) , the ambient strength and creep behavior are not obviously changes.
出处 《特殊钢》 北大核心 2014年第2期47-50,共4页 Special Steel
关键词 25Cr37Ni0 6Nb高温合金 TI NB 固溶处理 析出相 晶粒粗化 High Temperature Alloy 25Cr37Ni0.6Nb, Ti, Nb, Solid-Solution Treatment, Precipitates, Grain Coarsening
  • 相关文献

参考文献13

  • 1International H. Haynes HR-120 Alloy Brochure:No. H-3125E [ EB/ OL] [Z].
  • 2陈恭珉.哈氏合金:解决有害垃圾处理设备腐蚀问题的最佳选择(低温腐蚀部分)[J].上海化工,2005,30(8):51-52. 被引量:2
  • 3Maziasz P J, Pint B A, Shingiedecker J P, et al. Advanced Alloys for Compact, High-efficiency, High-temperature Heat-exchangers [ J ]. International Journal of Hydrogen Energy, 2007,32 ( 16 ) : 3622- 3630.
  • 4Chen L J, Liaw P K, Wang H, et al. Cyclic Deformation Behavior of HAYNES HR-120 Superalloy Under Low-cycle Fatigue Loading [J]. Mechanics of Materials,2004,36( 1 ) :85-98.
  • 5Chen L J,Liaw P K,Mcdaniels R L,et al. The Low-cycle Fatigue and Fatigue-crack-growth Behavior of HAYNES HR-120 Alloy [ J ]. Metallurgical and Materials Transactions A, 2003,34 ( 7 ) : 1451-1460.
  • 6He Y H, Chen L J, Liaw P K, et al. Low-cycle Fatigue Behavior of HAYNES HR-120 Alloy [ J ]. International Journal of Fatigue, 2002,24(9) :931-942.
  • 7Srivastava S K, Lai G Y, Warner T L. Creep-rupture Behavior of an Fe-Ni-Cr-Nb-N Alloy( HR-120 Alloy) [ J ]. Heat Resistant Materials 1I ,1995:495-502.
  • 8Aquaro D, Pieve M. High Temperature Heat Exchangers for Power Plants :Performance of Advanced Metallic Recuperators [ J ]. Applied Thermal Engineering,2007,27 ( 2 ) :389-400.
  • 9Maziasz P J, Pint B A, Shingledecker J P, et al. Austenitic Stainlessand Alloys with Improved High-temperature Performance for Ad- vanced Microturbine Recuperators [ Z ]. ASME ,2004.
  • 10Omatete O O, Maziasz P J, Pint B A, et al. Assessment of Recupera- tor Materials for Microturbines [ J 1. ORNL/TM-2000-304,2000.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部