期刊文献+

Identification and characterization of genes that control fat deposition in chickens 被引量:9

Identification and characterization of genes that control fat deposition in chickens
下载PDF
导出
摘要 Background: Fat deposits in chickens contribute significantly to meat quality attributes such as juiciness, flavor, taste and other organoleptic properties. The quantity of fat deposited increases faster and earlier in the fast- growing chickens than in slow-growing chickens. In this study, Affymetrix Genechip~ Chicken Genome Arrays 32773 transcripts were used to compare gene expression profiles in liver and hypothalamus tissues of fast-growing and slow-growing chicken at 8 wk of age. Real-time RT-PCR was used to validate the differential expression of genes selected from the microarray analysis. The mRNA expression of the genes was further examined in fat tissues. The association of single nucleotide polymorphisms of four lipid-related genes with fat traits was examined in a F2 resource population. Results: Four hundred genes in the liver tissues and 220 genes hypothalamus tissues, respectively, were identified to be differentially expressed in fast-growing chickens and slow-growing chickens. Expression levels of genes for lipid metabolism (SULTIB1, ACSBG2, PNPLA3, LPL, AOAH) carbohydrate metabolism (MGAT4B, XYLB, GBE1, PGM1, HKDCl)cholesttrol biosynthesis (FDPS, LSS, HMGCR, NSDHL, DHCR24, IDI1, MEI) HSD17B7 and other reaction or pro- cesses (CYPIA4, CYP1A1, AKR1BI, CYP4V2, DDO) were higher in the fast-growing White Recessive Rock chickens than in the slow-growing Xinghua chickens. On the other hand, expression levels of genes associated with multicellular organism development, immune response, DNA integration, melanin biosynthetic process, muscle organ develop- ment and oxidation-reduction (FRZB, DMD, FUT8, CYP2C45, DHRSX, and CYP2C18) and with glycol-metabolism (GCNT2, ELOVL d, and FASN), were higher in the XH chickens than in the fast-growing chickens, fiT-PCR validated high expression levels of nine out of 12 genes in fat tissues. The G1257069A and T1247123C of the ACSBG2 gene were significantly associated with abdominal fat weight. The G4928024A of the FASN gene were significantly associ- ated with fat bandwidth, and abdominal fat percentage. The C4930169T of the FASN gene was associated with ab- dominal fat weight while the A59539099G of the ELOVL 6 was significantly associated with subcutaneous fat. The A8378815G of the DDT was associated with fat band width. Conclusion: The differences in fat deposition were reflected with differential gene expressions in fast and slow growing chickens. Background: Fat deposits in chickens contribute significantly to meat quality attributes such as juiciness, flavor, taste and other organoleptic properties. The quantity of fat deposited increases faster and earlier in the fast- growing chickens than in slow-growing chickens. In this study, Affymetrix Genechip~ Chicken Genome Arrays 32773 transcripts were used to compare gene expression profiles in liver and hypothalamus tissues of fast-growing and slow-growing chicken at 8 wk of age. Real-time RT-PCR was used to validate the differential expression of genes selected from the microarray analysis. The mRNA expression of the genes was further examined in fat tissues. The association of single nucleotide polymorphisms of four lipid-related genes with fat traits was examined in a F2 resource population. Results: Four hundred genes in the liver tissues and 220 genes hypothalamus tissues, respectively, were identified to be differentially expressed in fast-growing chickens and slow-growing chickens. Expression levels of genes for lipid metabolism (SULTIB1, ACSBG2, PNPLA3, LPL, AOAH) carbohydrate metabolism (MGAT4B, XYLB, GBE1, PGM1, HKDCl)cholesttrol biosynthesis (FDPS, LSS, HMGCR, NSDHL, DHCR24, IDI1, MEI) HSD17B7 and other reaction or pro- cesses (CYPIA4, CYP1A1, AKR1BI, CYP4V2, DDO) were higher in the fast-growing White Recessive Rock chickens than in the slow-growing Xinghua chickens. On the other hand, expression levels of genes associated with multicellular organism development, immune response, DNA integration, melanin biosynthetic process, muscle organ develop- ment and oxidation-reduction (FRZB, DMD, FUT8, CYP2C45, DHRSX, and CYP2C18) and with glycol-metabolism (GCNT2, ELOVL d, and FASN), were higher in the XH chickens than in the fast-growing chickens, fiT-PCR validated high expression levels of nine out of 12 genes in fat tissues. The G1257069A and T1247123C of the ACSBG2 gene were significantly associated with abdominal fat weight. The G4928024A of the FASN gene were significantly associ- ated with fat bandwidth, and abdominal fat percentage. The C4930169T of the FASN gene was associated with ab- dominal fat weight while the A59539099G of the ELOVL 6 was significantly associated with subcutaneous fat. The A8378815G of the DDT was associated with fat band width. Conclusion: The differences in fat deposition were reflected with differential gene expressions in fast and slow growing chickens.
出处 《Journal of Animal Science and Biotechnology》 SCIE CAS 2014年第1期22-37,共16页 畜牧与生物技术杂志(英文版)
基金 provided by The Ministry of Higher Education Student Financing Agency of Rwanda,China Scholarship Council and South China Agricultural University,Guangzhou,China provided by the Major State Basic Research Development Program,China(project no.2006CB102107) the National High Technology Research and Development Program of China(863 Program,project no.2007AA10Z163)
关键词 CHICKEN Fat deposition GENES Chicken, Fat deposition, Genes
  • 相关文献

参考文献54

  • 1Ricard FH, Rouvier R: Etude de la composition anatomique du poulet. 1. Variabilite de la repartition des differentes parties corporelle chez de coquelets "Bresse-Pile". Anti Zoorerh 1967, 16:23.
  • 2Proudman W, Mellen J, Anderson DL: Utilization of feed in fast- and slow- growing lines of chickens. Pou/t Sd 1970, 49:961-972.
  • 3Leclercq B, Blum JC, Boyer JP: Selecting broilers for low or high abdominal fat: initial observations. Br Poult 5ci 1980, 21:107- 113.
  • 4Becker WA: Genotypic and phenotypic relations of abdominal fat in chickens. Kansas City, Missouri: Presented at the 27th Annual National Breeder's roundtable; 1978.
  • 5Huan Xian C, Ran-Ran L, Gui Ping Z, Mai-Qing Z, Ji-Lan C, Jie W: Identifica- tion of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens. BMC Genomics 2012, 13:213.
  • 6DunnJngton EA, Siegel PB: Long-term divergent selection for eight-week body weight in white Plymouth rock chickens. Poulln/Sci 1996, 75:1168- 1179.
  • 7Zhao SM, Ma HT, Zou SX, Chen WH: Effects of in ovo administration of DHEA on lipid metabolism and hepatic lipogenetic genes expression in broiler chickens during embryonic development. Lipids 2007, 42:749 -757.
  • 8Zhao X, Mo DL, Li AN, Gong W, Xiao SQ, Zhang Y, Qin LM, Niu YN, Guo YX, Liu XH, Cong PQ, He ZY, Wang C, Li JQ, Chen %: Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PLoS One 2011, 6(5):e19774. 1-18.
  • 9Havenstein GB, Ferket PR, Qureshi MA: Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult Sci 2003.82:1509-1518.
  • 10Jakobsson A, Westerberg R, Jacobsson A: Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog Lipid Res 2005, 45:237- 249.

同被引文献66

引证文献9

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部