期刊文献+

数字微流控生物芯片测试诊断过程分析和优化 被引量:1

Analysis and optimization of test and diagnosis process for digital microfluidic biochip
下载PDF
导出
摘要 针对数字微流控生物芯片的测试和诊断过程进行建模和分析,并根据并行测试的分块数和单元出错概率为相应的测试和诊断成本建立函数。通过Matlab对测试诊断成本函数的分析表明:随着并行测试分块数的增大,测试诊断成本的变化趋势不明显,也就是说,并行测试的分块数对测试诊断成本的影响不大;而随着单元出错概率p的增加,测试成本呈明显的增加趋势,且增加的幅度较大。另外,诊断过程中,根据单元出错概率对出错的子阵列再进行诊断,诊断过程必须持续若干次,直到所有故障定位后才能结束。在这些诊断中,针对最后一次定位的诊断成本是最大的,而且与其他次的诊断过程的成本相差几十个数量级,决定了总成本的大小。这些结论为数字微流控生物芯片的测试和诊断过程优化提供重要的理论依据,并为测试诊断方法的设计提供指导。 To achieve the test and diagnosis solution for digital microfluidic biochip, the test and di agnosis process is modeled, and the corresponding diagnosis test cost is computed. The test and diagno- sis cost is analyzed by the tools of Matlab, and some important observations are obtained. Firstly, with the increase of the number of sub-arrays divided for parallel testing, the test and diagnosis cost nearly does not change at all. In other words, the number of sub-arrays has less impact on the test and diagno- sis cost. Secondly, as the faulty probability of the single biochip cell increases, the test and diagnosis cost increases dramatically. In addition, in the process of the diagnosis, the faulty domain must be diag- nosed according to the corresponding faulty probability until all the faults are located. The test and diag- nosis cost of the last faulty location is the maximum, dominating the total test and diagnosis cost of the biochip. These observations provide the theory evidence and guidance for digital microfuidic biochip test and diagnosis.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第3期411-415,共5页 Computer Engineering & Science
基金 湖北省教育厅科研项目(B2013061)
关键词 数字微流控生物芯片测试 生物芯片阵列规模 测试诊断 测试成本 digital microfluidic biochip biochip array test and diagnosis test cost
  • 相关文献

参考文献1

二级参考文献13

  • 1Su F,Ozev S,Chakrabarty K. Testing of dropletbased microelectrofluidic systems[A].Charlotte,USA:IEEE Computer Society,2003.1192-1200.
  • 2Su F,Ozev S,Chakrabarty K. Test planning and test resource optimization for droplet-based microfluidic systems[A].France:IEEE Computer Society,2004.72-77.
  • 3Su F,Hwang W,Mukherjee A. Defect-oriented testing and diagnosis of digital microfluidics-based biochips[A].Autin,USA:IEEE Computer Society,2005.486-496.
  • 4Mitra D,Ghoshal S,Rahaman H. Testing of digital microfluidic biochips using improved eulerization techniques and the Chinese postman problem[A].Austin,USA:IEEE Computer Society,2010.111-116.
  • 5HHHDebasis M,Sarmishtha G,HHH Hafizur R. Test planning in digital microfluidic biochips using efficient eulerization techniques[J].Journal of Electronic Testing,2011,(05):657-671.
  • 6Su F,Ozev S,Chakrabarty K. Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays[A].Charlotte,USA:IEEEComputer Society,2004.883-892.
  • 7Su F,Ozev S,Chakrabarty K. Concurrent testing of digital microfluidics-based biochips[J].ACM Transactions on Design Automation of Electronic System (TODAYS),2006,(02):442-464.
  • 8Xu T,Chakrabarty K. Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips[J].IEEE Transaction on Biomedical Circuits and Systems,2007,(02):148-158.
  • 9Majumder M,Ray S,Roy S. A multi droplets detection technique for single-fault in digital micro-fluidic biochip[A].Pune,India:Springer Berlin Heidelberg,2011.506-511.
  • 10Zhao Y,Chakrabarty K,Sturmer R. Optimization techniques for the synchronization of concurrent fluidic operations in pin-constrained digital microfluidic biochips[J].IEEE Transactions on Very Large Scale Integration Systems,2012,(06):1132-1145.

共引文献7

同被引文献15

  • 1Xu T and Chakrabarty K. Fault modeling and functional test methods for digital microfluidic biochips[J]. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3(4): 241-253.
  • 2Xu T and Chakrabarty K. Broadcast electrode-addressing and scheduling methods for pin-constrained digital microfluidic biochip[J]. IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, 2011, 30(7): 986-999.
  • 3Luo Y and Chakrabarty K. Design of pin-constrained general-purpose digital microfluidic biochips[J]. IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems, 2013, 32(9): 1307-1320.
  • 4Grissom D T, McDaniel J, and Brisk P. A low-cost field- programmable pin constrained digital microfluidic biochip[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(11): 1657-1670.
  • 5Su F, Ozev S, and Chakrabarty K. Testing of droplet-based microelectrofluidics systems[C]. Proceedings IEEE International Test Conference, Charlotte, 2003: 1192-1200.
  • 6Su F, Ozev S, and Chakrabarty K. Test planning and test resource optimization for droplet-based microfluidic systems [J]. Journal of Electronic Testing: Theory and Applications, 2006, 22(2): 199-210.
  • 7Su F, Hwang W, Mukherjee A, et al.. Testing and diagnosis of realistic defects in digital microfluidic biochips[J]. Journal of Electronic Testing: Theory and Applications, 2007, 23(2/3): 219-233.
  • 8Xu T and Chakrabarty K. Paralled scan-like test and multiple-defect diagnosis for digital microfluidic biochips[J]. IEEE Transactions on Biomedical Circuits and Systtems, 2007, 1(2): 148-158.
  • 9Su F, Ozev S, and Chakrabarty K. Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays[C]. Proceedings IEEE International Test Conference, Charlotte, 2004: 883-892.
  • 10Royal M W, Jokerst N M, and Fair R B. Droplet-based sensing: Optical microresonator sensors embedded in digital electrowetting microfluidics systems[J]. IEEE Sensors Journal, 2013, 13(12): 4733-4742.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部