期刊文献+

一种单种群混合蛙跳算法 被引量:2

A single population shuffled frog leaping algorithm
下载PDF
导出
摘要 针对SFLA算法运行速度较慢、在优化部分函数问题时精度不高和易陷入局部最优的缺点,提出了一种单种群混合蛙跳算法SPSFLA。该算法采用单个种群,无需对整个种群进行排序,每个个体通过向群体最优个体和群体中心位置学习进行更新。如果当前个体学习没有进步,则对群体最优个体进行变异,并用变异的结果替代当前个体,加快了算法的运行速度和收敛速度,提高了优化精度。仿真实验结果表明,该算法具有更好的优化性能。 Aiming at the shortcomings of shuffled frog leaping algorithm(SFLA) such as ease of trapping into local optimum, low optimization precision and slow speed when it is used to optimize some functions, a Single Population Shuffled Frog Leaping Algorithm (SPSFLA) is proposed. Without sor- ting the whole population, this new algorithm adopts single population. The individuals are updated by learning from the global best individual and the global middle position. If the current individual is not improved, the global best individual will be mutated and the current individual will be replaced by the new one. Those enhance the running speed, the convergence rate and the optimization precision of SPS- FLA. The simulation results show that the improved algorithm has better optimization performance.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第3期463-468,共6页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61063028) 甘肃省教育信息化发展战略研究项目(2011)
关键词 群体智能 混合蛙跳算法 单种群 加速因子 聚群行为 swarm intelligence shuffled frog leaping algorithm single population acceleration fac-tor swarm behavior
  • 相关文献

参考文献5

二级参考文献52

共引文献95

同被引文献16

  • 1Eusuff M M, Lansey K E. Optimization of Water Distribution Network Designusing Shuffled Frog Leaping Algorithm [-J. Journal of Water Resources Planning and Management, 2003, 129(3): 210-225.
  • 2Elbeltagi E, Hegazy T, Grierson D. Comparison among Five Evolutionary-Based Optimization Algorithms [-J. Advanced Engineering Informatics, 2005, 19(1): 43-53.
  • 3Amiri B, Fathian M, Maroosi A. Application of Shuffled Frog-Leaping Algorithm on Clustering I-J. International Journal of Advanced Manufacturing Technology, 2009, 45 (1) : 199-209.
  • 4Bhaduri A. A Clonal Selection Based Shuffled Frog Leaping Algorithm EC//IEEE International Conference on Advance Computing. Piscataway, NJ: IEEE, 2009: 125-130.
  • 5Rahimi-Vahed A, Mirzaei A H. A Hybrid Multi-objective Shuffled Frog Leaping Algorithm for a Mixed-Model Assembly Line Sequencing Problem FJ. Computers and Industrial Engineering, 2007, 53(4). 642-666.
  • 6Kari J. Theory of Cellular Automata A Survey [J]. Theoretical Computer Science, 2005, 334(1/2/3) . 3-33.
  • 7赵鹏军,刘三阳.求解复杂函数优化问题的混合蛙跳算法[J].计算机应用研究,2009,26(7):2435-2437. 被引量:71
  • 8罗雪晖,杨烨,李霞.改进混合蛙跳算法求解旅行商问题[J].通信学报,2009,30(7):130-135. 被引量:93
  • 9岳克强,赵知劲,沈雷.基于负熵和智能优化算法的盲源分离方法[J].计算机工程,2010,36(4):250-252. 被引量:8
  • 10刘金梅,屈强.几类混沌序列的随机性测试[J].计算机工程与应用,2011,47(5):46-49. 被引量:22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部