期刊文献+

基于K-SVD的低信噪比WMSN视频图像稀疏去噪 被引量:3

K-SVD based sparse denoising for WMSN video image with low SNR
下载PDF
导出
摘要 无线多媒体传感器网络WMSN因感知视频等信息的优势而被广泛应用,但受天气、光照等外因干扰,所采集视频图像常含有较为严重的噪声。因此,在低信噪比条件下进行视频图像去噪是保证WMSN视频监测有效性和可靠性的关键。在分析WMSN视频图像特征的基础上,首先对其进行周期性采集、分帧及帧差等预处理;然后对关键帧运用K-SVD训练DCT冗余字典以充分稀疏表示图像特征,并采用基于残差比的改进型Batch-OMP实现关键帧去噪及重构,而对残差帧则基于DCT冗余字典进行稀疏去噪处理;最后,叠加去噪后的关键帧和残差帧,从而整体上实现低信噪比WMSN视频图像的去噪及重构。实验表明,本算法能更加有效地、较为快速地滤除视频图像噪声,适用于低信噪比WMSN视频图像去噪。 As a highly effective method of perceiving multimedia information, Wireless Multimedia Sensor Networks (WMSNs) has shown its potential in many areas. However, the outside interference in the monitoring environment brings severe noise to video images. Obviously, video image denoising be- comes the key to ensuring the validity and reliability of WMSN video monitoring. To denoise WMSN video image, firstly, its features are analyzed and some pretreatment are done. Secondly, the K-SVD al- gorithm is employed to adaptively train DCT dictionary for reflecting the image characteristics and recon- struct the key frame through improved Batch-OMP algorithm with residual ratio as the iteration termina- tion, while DCT dictionary is adopted to sparsely denoise the residual frames. Finally, the video image is reconstructed under the situation of low SNR. Experimental results show that, compared with its coun- terparts, the superiorities of the algorithm can be observed in both visual and some numerical guidelines, showing the suitability for the WMSN video image denoising in low SNR.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第3期497-501,共5页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61261040)
关键词 稀疏去噪 K奇异值分解 残差比 低信噪比 无线多媒体传感器网络 sparse denoising K-SVD residual ratio low SNR wireless multimedia sensor network
  • 相关文献

参考文献1

二级参考文献14

  • 1王建英,尹忠科.基于稀疏分解的微弱信号检测方法[J].铁道学报,2007,29(2):114-117. 被引量:10
  • 2Abdallah S A, Plumbley M D. Unsupervised analysis of polyphonic music by sparse coding [J].IEEE Transactions on Neural Networks, 2006, 17 ( 1 ) : 179- 196.
  • 3Malioutov D M, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8) :3010-3022.
  • 4Liu H H, Schimpf P H, Dong G Y. Standardized shrinking LORETA-FOCUSS (SSLOFO) : A new algorithm for spatio-temporal EEG source reconstruc-tion [J].IEEE Transactions on Biomedical Engineering, 2005, 52(10):1681-1691.
  • 5Chen S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [J]. SIAM Review, 2001, 43(1): 129-159.
  • 6Yeste-Ojeda O A, Grajal J. Atomic decomposition for ISAR imaging [C-]//IEEE Conference on Radar. [s. l. ]:IEEE, 2006: 504-509.
  • 7Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries [J]. IEEE Transactions on Signal Processing, 1993,41(12) : 3397-3415.
  • 8Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition [J]. IEEE Transactions on Information Theory, 2001, 47(7) :2845-2862.
  • 9Donoho D L. Wedgelets: Nearly-minimax estimation of edges [J]. The Annals of Statistics, 1999, 27 (3) : 959-897.
  • 10Huber P J. Projection pursuit [J]. The Annals of Statistics, 1985, 13(2) :435-475.

共引文献34

同被引文献18

  • 1Wright J,Yang A Y, Ganesh A, et al. Robust face recognition via spare representation[J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence ,2010,31 (2) :210-227.
  • 2Gao S H, Tsang L W H, Chia L T. Kernel sparse representation for image classification and face recognition [ C ]//Proc of llth European conference on computer vision. Heraklion, Greece : [ s. n. ] ,2010 : 1-14.
  • 3Zhang L, Yang M, Feng X C. Sparse representation or collabo- rative representation: which helps face recognition? [ C ]// Proc of IEEE international conference on computer vision. Barcelona : IEEE ,2011:471-478.
  • 4Aharon M, Elad M, Bruckstein A. K-SVD:an algorithm for de- signing overcomplete dictionaries for sparse representation [ J ]. IEEE Trans on Signal Processing, 2006,54 ( 11 ) :4311 - 4322.
  • 5Zhang Q,Li B X. Discriminative KSVD for dictionary learning in face recognition[ C ]//Proe of the IEEE conference on com- puter vision and pattern recognition. San Francisco, USA: IEEE ,2010 :2691-2698.
  • 6Frigui H, Krishnapuram R. Clustering by competitive agglom- eration[ J ]. Pattern Recognition, 1997,30 (7) : 1109-1119.
  • 7Mallar S G,Zhang Z. Matching pursuits with time-frequency dictionaries [ J ]. IEEE Transactions on Signal Processing, 1993,41 (12) :3397-3415.
  • 8练秋生,陈书贞.基于混合基稀疏图像表示的压缩传感图像重构[J].自动化学报,2010,36(3):385-391. 被引量:28
  • 9史宏宇,梅玉.基于G/S模式的视频监控系统图像去雾处理算法的设计与实现[J].电脑与电信,2011(9):36-38. 被引量:1
  • 10练秋生,张伟.基于图像块分类稀疏表示的超分辨率重构算法[J].电子学报,2012,40(5):920-925. 被引量:52

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部