期刊文献+

两点量子元胞自动机逻辑电路设计与仿真 被引量:1

Design and Simulation of the 2-Dot Quantum-Dot Cellular Automata Logic Circuit
下载PDF
导出
摘要 择多逻辑门和反相器是量子元胞自动机(QCA)逻辑电路的基本组件。设计了两点量子元胞自动机(两点QCA)的传输线、择多逻辑门和反相器等基本逻辑器件。通过仅在信号沿竖直方向传递需要取反时用到水平放置元胞的设计,使电路布局更加紧凑。利用这些基本逻辑器件完成了一位数值比较器电路的设计。基于两点QCA系统的半经典模型,利用遗传模拟退火法对电路功能进行了仿真。仿真结果显示,两点QCA同样能够有效实现传统四点QCA的功能,而其所需的电子数和量子点数均减少了32.1%,电路集成度提高了49.4%。 The majority gate and inverter are basic components of the quantum-dot cellular au- tomata (QCA) logic circuit. Usually, any functional logic circuits can be implemented by using the majority gate and inverter. Therefore, some basic logic devices, such as the binary wire, ma- jority gate and inverter were designed for the 2-dot QCA. The horizontal cell is just used when the signal passing in the vertical direction need to be inverted. Such a design makes the layout of the circuit more compact. A logic circuit of 1-bit comparator was designed with these basic logic devices. The simulation for the circuit function was achieved through the genetic simulated annea- ling method based on the semiclassical model of the 2-dot QCA. The simulation results indicate that the 2-dot QCA is capable of realizing the function of the traditional 4-dot QCA. Compared with the traditional 4-dot QCA, the amounts of electrons and quantum dots required for the 2-dot QCA reduce by 32.1%, and the integration increases by 49.4%.
出处 《微纳电子技术》 CAS 北大核心 2014年第3期141-145,共5页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(61172043) 陕西省自然科学基础研究计划重点项目(2011JZ015) 陕西省自然科学基础研究计划资助项目(2013JQ8010)
关键词 两点量子元胞自动机(QCA) 择多逻辑门 反相器 数值比较器 半经典模型 遗传模拟退火法 2-dot quantum-dot cellular automata (QCA) majority gate inverter numeric comparator semiclassical model genetic simulated annealing method
  • 相关文献

参考文献8

  • 1LENT C S, TOUGAW P D, POROD W, et al. Quantum cel- lular automata [J]. Nanotechnology, 1993, 4 (1) : 49 - 57.
  • 2TOUOAW P D, LENT C S, POROD W. Bistable saturation in coupled quantum-dot cells [J]. Journal of Applied Physics, 1993, 74 (5): 3558-3566.
  • 3TOUGAW P D, LENT C S. Logical devices implemented using quantum cellular automata[J]. Journal of Applied Physics, 1994, 75 (3): 1818- 1825.
  • 4夏银水,裘科名.基于量子细胞自动机的数值比较器设计[J].电子与信息学报,2009,31(6):1517-1520. 被引量:17
  • 5WANG Y L, LIEBERMAN M. Thermodynamic behavior of molecular-scale quantum-dot cellular automata (QCA) wires and logic devices [J]. IEEE Transactions on Nanotechnology, 2004, 3 (3): 368-376.
  • 6HOOK L R, LEE S C. Design and simulation of 2-D 2-dot quantum-dot cellular automata logic [J]. IEEE Transactions on Nanotechnnlogy, 2011, 10 (5) : 996- 1003.
  • 7RAHIMI E, NEJAD S M. Scalable minority gate: a new de- vice in two-dot molecular quantum-dot cellular automata [J]. Micro & Nano Letters, 2012, 7 (8) : 802 - 805.
  • 8王森,蔡理,刘河潮.基于遗传模拟退火法的量子细胞自动机电路仿真[J].系统仿真学报,2005,17(8):2027-2029. 被引量:9

二级参考文献14

  • 1王森,蔡理,郭律.基于量子细胞自动机的全加器实现[J].固体电子学研究与进展,2005,25(2):148-151. 被引量:10
  • 2Lent C S, Tougaw P D, and Porod W. Bistable saturation in coupled quantum dots for quantum cellular automata[J]. Applied Physics Letters, 1993, 62(7): 714-716.
  • 3Cho H and Swartzlander E E. Adder designs and analyses for quantum-dot cellular automata[J]. IEEE Trans. on Nanotechnology, 2007, 6(3): 374-383.
  • 4Choi M and Choi M. Scalability of globally asynchronous QCA (quantum-dot cellular automata) adder design[J]. Journal of Electronic Testing, 2008, 24(1-3): 313-320.
  • 5Heumpil C and Swartzlander E E. Serial parallel multiplier design in quantum-dot cellular automata[C]. IEEE Symposium on Computer Arithmetic, Montpellier, France, Jun. 25-27, 2007: 7-15.
  • 6Niemier M T and Kogge P M. Logic in wire: using quantum dots to implement a microprocessor[C]. Proceedings of Ninth Great Lakes Symposium on VLSI, Ann Arbor, MI, USA, Mar.4-6, 1999: 118-121.
  • 7Lent C S and Tougaw P D. Lines of interacting quantum-dot cells: A binary wire[J]. Journal of Applied Physics, 1993, 74(10): 6227-6233.
  • 8Kim K, Wu K J, and Karri R. Quantum-dot cellular automata design guideline[J]. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, 2006 E89-A(6): 1607-1641.
  • 9Walus K, Dysart T J, and Jullien G A, et al.. QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata[J]. IEEE Trans. on Nanoteehnology, 2004, 3(1): 26-31.
  • 10Porod W, Lent C S, Tóth G, et al. Quantum-Dot Cellular Nonlinear Networks: Computing with Locally-Connected Quantum Dot Arrays [J]. Proc. IEEE Int. Symp. Circuits Systems, ISCAS'79, Hong Kong: 1997, 745.

共引文献23

同被引文献10

  • 1王森,蔡理,刘河潮.量子细胞神经网络中的分岔与混沌[J].空军工程大学学报(自然科学版),2005,6(3):85-87. 被引量:3
  • 2王森,蔡理,郭律.基于量子细胞自动机的全加器实现[J].固体电子学研究与进展,2005,25(2):148-151. 被引量:10
  • 3王森,蔡理,刘河潮.基于遗传模拟退火法的量子细胞自动机电路仿真[J].系统仿真学报,2005,17(8):2027-2029. 被引量:9
  • 4Lent C S, Tougaw P D, Porod W. et al. Quantumcellular automata[J]. Nanotechnology,1993,4(1):49-57.
  • 5Tougaw P D,Lent C S,Wolfgang P. Bistable satura-tion in coupled quantum-dot cellularsQO.J appl phys,1993,74(5):3558-3566.
  • 6Lent C S,Tougaw P D. Logical devices implementedusing quantum cellular automata [ J]. J appl phys,1994, 75(3): 1818-1825.
  • 7Wang Y,Lieberman M. Thermodynamic behavior ofmolecular - scale quantum - dot cellular automata(QCA) wires and logic devices[J]. IEEE trans nano-technol, 2004, 3 (3):368-376.
  • 8Rahimi E, Mohammad Nejad S. Scalable minoritygate: a new device in two-dot molecular quantum-dotcellular automata [J], Micro & nano letters. 2012,7(8):802-805.
  • 9Hook L R,Lee S C. Design and simulation of 2-D 2-dot quantum - dot cellular automata logic [J]. IEEEtrans nanotechnology,2001,10 (5):996-1003.
  • 10蔡理,马西奎.单电子晶体管(SET)及其应用[J].空军工程大学学报(自然科学版),2002,3(6):60-63. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部