期刊文献+

先导光刻中的光学邻近效应修正 被引量:4

Optical Proximity Correction in the Advanced Photolithography
下载PDF
导出
摘要 按照逻辑器件发展的节点顺序,依次论述了各种光学邻近效应修正技术:基于经验的光学邻近效应修正、基于模型的光学邻近效应修正、曝光辅助图形、光源和掩模版的优化、反演光刻技术以及两次曝光技术等。概括了各种技术出现的逻辑技术节点、数据处理流程、修正的表现形式和效果、优势和发展前景等。最后就先导光刻工艺的研发模式(先建立光学和光刻胶模型,再进行"计算光刻"),论证了光刻工艺的研发必须和光学邻近效应修正的数据流程实现互动的观点,即任何光刻工艺参数的变动都会影响到"计算光刻"模型的准确性,需要重新进行修正,以避免原计算可能导致的失败。因此,光学邻近效应修正是先导光刻工艺研发的核心。 According to the node sequence of the logic device development, the various optical proximity effect correction (OPC) techniques are discussed in turn: the rule-based OPC, model- based OPC, exposure auxiliary graph, source-mask optimization (SMO), inverse lithography technology and double exposure technology and so on. The logic technology node, data proces- sing procedure, correction form and effect, as well as advantages and development prospects for the various ()PC techniques are summarized. Finally, according to the research and development mode of the advanced photolithography (optics and photoresist model is established firstly, then "computational lithography" is carried out), the viewpoint is demonstrated that the lithography process research and development must interact with the data flow of the OPC, i.e. any changes of photolithography process parameters will affect the accuracy of the " computational lithography" model, and the correction again will be needed to avoid the failure caused by the original calculation. Therefore, the OPC is the core of the research and development for the advanced photolithography.
出处 《微纳电子技术》 CAS 北大核心 2014年第3期186-193,共8页 Micronanoelectronic Technology
基金 国家中长期科技发展规划02科技重大专项(2014ZX02301001-004)
关键词 光学邻近效应修正(OPC) 辅助图形 计算光刻 光源和掩模版的优化(SMO) 像素式光照 两次曝光技术 ptical proximity correction (OPC) auxiliary graph computational lithography source-mask optimization (SMO) pixelated illumination double exposure technology
  • 相关文献

参考文献15

  • 1WONG A K K. Resolution enhancement techniques in optical li- thography [M]. Bellingham, WA, USA, SPIE Press, 2001: 91 - 115.
  • 2van DRIESSCHE V, FINDERS J, TRITCHKOV A, et al. Feasibility of 250 nm gate patterning using i-line with OPC [J]. Microelectronic Engineering, 1998, 41/42 : 111 - 115.
  • 3SHI R, CAI Y C, HONG X L, et al. The selection and crea- tion of rules in rules-based optical proximity correction [C] // Proceedings of the 4th International ASIC Conference. Shang- hai, China, 21)01 : 50 - 53.
  • 4CAPODIECI L, GUPTA P, KAHNG A B, et al. Toward a methodology for manufacturability-driven design rule explora- tion [C] // Proceedings of the 41^st annual Design Automation Conference. New York, USA, 2004: 311- 316.
  • 5BANERJEE S, ELAKKUMANAN P, LIEBMANN L W, et al. Electrically driven optical proximity correction based on linear programming [C] //Proceedings of the 2008 IEEE/ACM In- ternational Conference on Computer-Aided Design. New Jersey, USA, 2008: 473-479.
  • 6HAN G, BRENDLER A, MANSFIELD S, et al. Statistical optimization of sampling plan and its relation to OPC model ac- curacy [C] // Proceedings of Metrology, Inspection, and Process Control for Microlithography XXI. San Jose, CA, USA, 20(17, 6518: 651808-1- 651808-10.
  • 7WEI Y Y, BRAINARD R L. immersion lithography [M]. Press, 2009: 101- 153.
  • 8Advanced processes for 193 nm Bellingham, WA, USA: SPIE WAMPLER K E, LAIDIG T L. Method for generating proximity correction features for a lithographic mask pattern: US, 5663893 [P]. 1997-09-02.
  • 9MACK C. Fundamental principles of optical lithography: the science of mierofahrieation [M]. New York, USA: John Wi- ley & Sons, 2007: 411- 456.
  • 10DRAPEAU M, WlAUX V, HENDRICKX E, et al. Double patterning design split implementation and validation for the 32 nm node [C] // Proceedings of Design for Manufacturability through Design-Process Integration. San Jose, CA, USA, 2007, 6521: 652109-1- 652109-15.

同被引文献41

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部