摘要
在准经典理论下,研究双势阱中的两组分玻色-爱因斯坦凝聚系统的动力学属性。利用平均场近似写出该量子系统的经典哈密顿量,通过数值及线性化分析,找到系统的对称型、反对称型、各向同性型及非对称型共四类不动点。分别讨论两种特殊模式下的不动点数目的变化情况和稳定性,发现两种模式出现不动点数目的上下限,且两种模式下不动点的稳定性与对应系数矩的阵特征值有关。
The dynamic properties of the two components Bose-Einstein condensates system in a double-well potential is studied within classical theory in this paper. The mean-field approxima- tion is used to write the classical Hamiltonian of the quantum system, and then the numerical and linear analysis is used to find four types of the fixed point., symmetrical, antisymmetrical, iso- tropic and asymmetrical. The variety of the fixed point number and their stability of the two spe- cial modes are discussed. The results show that the stability of the fixed point is related to the ei- genvalues of the matrix.
出处
《西安邮电大学学报》
2014年第1期58-61,共4页
Journal of Xi’an University of Posts and Telecommunications
基金
国家自然科学基金资助项目(11104217
11174165)
关键词
两组分玻色-爱因斯坦凝聚系统
不动点
哈密顿系统
two components Bose-Einstein condensates system, the fixed point, Hamiltonian system