期刊文献+

LTCC高温压力传感器温漂特性研究 被引量:3

Temperatures Drift Characteristics of High Temperature Pressure Sensor Based on LTCC
下载PDF
导出
摘要 研究了利用杜邦951 LTCC材料制备的无线无源压力传感器的温漂特性。通过搭建高温测试系统,对传感器0~600℃内的高温特性进行了测试,结果表明传感器存在较大温度漂移。通过制作无腔传感器和LTCC基片上螺旋电感进行高温特性测试,通过对比分析,确定了造成传感器温漂的主要原因是LTCC材料相对介电常数的变化。结合测试数据和公式推导,得出了600℃时杜邦951 LTCC材料的相对介电常数由常温7.8增大到9.04。 Temperatures drift characteristics of wireless passive pressure sensor based on Dupont951 LTCC ( Low-Temperature Co-fired Ceramics) is investigated. By building high temperature test system,temperature characteristic of the sensor is tested within 0 ~600 ℃. Measurement results show rather large temperature drift of the sensor responses. Comparative study is carried out for a fabricated sensor with no-cavity sensing capacitor and on-chip planar spiral inductor under high temperature. The results indicate that the relative permittivity of DuPont951 LTCC material increases from 7 . 8 at room temperature to 9 . 04 at 600 ℃. The conclusion can be obtained that relative permittivity of LTCC material is the main factor which results in great temperature drift of the sensor.
出处 《传感技术学报》 CAS CSCD 北大核心 2014年第2期190-193,共4页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(51075375) 高等学校优秀青年学术带头人支持计划项目(2013)
关键词 无线无源压力传感器 相对介电常数 谐振频率 温度漂移 LTCC LTCC wireless passive pressure sensor relative permittivity resonant frequency temperature drift
  • 相关文献

参考文献14

  • 1王悦辉,周济,崔学民,沈建红.低温共烧陶瓷(LTCC)技术在材料学上的进展[J].无机材料学报,2006,21(2):267-276. 被引量:44
  • 2杨邦朝,付贤民,胡永达.低温共烧陶瓷(LTCC)技术新进展[J].电子元件与材料,2008,27(6):1-5. 被引量:56
  • 3严伟,禹胜林,房迅雷.基于LTCC技术的三维集成微波组件[J].电子学报,2005,33(11):2009-2012. 被引量:37
  • 4Gupta T K. Handbook of Thick- and Thln-Film Hybrid Microelec- tronics [ M ]. New Jersey : Wiley,2003.
  • 5Peterson K A, Knudson R T, et al. LTCC in Microelectronics, Micr- osystems, and Sensors [ C ]//Proceedings of 15th International Conference MIXDES 2008. Poznan, Poland,2008:23-37.
  • 6Malecha K,Pijanowska D G, Golonka L J, et al. LTCC Microreactor for Urea Determination in Biological Fluids [ J ]. Sensors and Actuators B ,2009 ( 141 ) :301-308.
  • 7Johnson R W,Evans J L,Jacobsen P,et al. The Changing Automotive Environment : High-Temperature Eleetronics [ J ]. IEEE Transactions on Electronics Packaging Manufacturing,2004,27(3):164-176.
  • 8George T,Son K A, Powers R A, et al. Harsh Environment Micro- technologies for NASA and Terrestrial Applications [ C ]//IEEE Sensors. Irvine, CA, USA,2005 : 1253-1258.
  • 9Werner M R, Fahrner W R. Review on Materials, Microsensors, Systems and Devices for High-Temperature and Harsh-Environment Applications[ J ]. IEEE Transactions on Industrial Electronics, 2001,48:249-257.
  • 10李莹.LTCC高温压力传感器的设计制作和测试[J].传感器与微系统,2013,32(4):101-102. 被引量:5

二级参考文献59

  • 1杜雪亮,戴华平,吴烈.无源电感耦合式射频识别系统天线的设计和优化[J].江南大学学报(自然科学版),2004,3(6):566-569. 被引量:9
  • 2崔学民,周济,沈建红,缪春林.低温共烧陶瓷(LTCC)材料的应用及研究现状[J].材料导报,2005,19(4):1-4. 被引量:37
  • 3朱海奎,刘敏,周洪庆.LTCC介质材料的研究进展[J].材料导报,2006,20(F05):328-330. 被引量:16
  • 4张书玉,张维连,索开南,牛新环,张生才,姚素英.SOI高温压力传感器的研究[J].传感技术学报,2006,19(4):984-987. 被引量:22
  • 5A Contolatis,V Sokolov.90°RF vertical interconnects[J].Microwave Jour nal,1993,36(6):102-104.
  • 6Yan Wei,Fang Xunlei,Yu Shenglin,Fu Peng.High density packaging technologies for 3D integrated phased-array microwave modules[A].2004 Inter national Radar Conference(RADAR2004)[C].Toulouse,France,2004.
  • 7A lsarawi S F,Abbott D,Franzon P D A.Review of 3D packaging technology[J].IEEE Tran.On CPMT,Part B,1998,21(1):2-14.
  • 8F J Schmuckle,A Jentzsch,W Heinrich,et al.LTCC as MCM substrate:design of strip-line structure and flip-chip interconnects[A].2001 IEEE MTT-S Digest[C].Phoenix,USA,2001.1903-1906.
  • 9Dear nely,R W,A R F Barel.A broad-band transmission line model for a rectangular microstrip antenna[J].IEEE Trans.AP,1989,37(1):6-15.
  • 10Yan Wei,Fang Xunlei,Hong Wei.3D packaging & interconnecting techniques for microwave modules[A].6th Inter national Symposium on Antenna,Propagation,and EM Theory (ISAPE2003)[C].Beijing,China,2003.847-850.

共引文献142

同被引文献33

  • 1严伟,禹胜林,房迅雷.基于LTCC技术的三维集成微波组件[J].电子学报,2005,33(11):2009-2012. 被引量:37
  • 2Pulliam W J, Russler P M, Mlcak R, et al. Mieromaehined SiC Fiber Optic Pressure Sensors for High-Temperature Aercaspaee Ap- plications [ C ]//Environmental and Industrial Sensing. International Sociely for Optics and Pholonics,2000:21-30.
  • 3Formseca M A,English J M, Von Arx M,et al. Wireless Micromaeh- ined Ceramic Pressure Sensor fiw High-Temperature Applications [ J ]. Journal of Microelectromeehanical Systems, 2002,11 (4) : 337- 343.
  • 4Dakshinamurthy S, Quick N R, Kar A. SiC-based Opticat lmertfer omelry at High Pressures and Temperatures for Pressure and Chemi- cal Sensing[ J ]. Journal of Applied Physics,2006,99(9) :094902.
  • 5Johnson R W, Evans J I.,Jaeobsen P,et al. The Changing A ulomo- tire Environment: High-Temperature Electronics [ J ]. Electronics Packaging Manufacturing, IEEE ,2004,27( 3 ) : 164-176.
  • 6Savrun E. Packaging Considerations for Vert High Temperature Mi- crosystems[ C]//Sensors,2002. Proceedings of IEEE. IEEE,2002, 2:1139-1143.
  • 7Werner M R,Fahrner W R. Review on Materials, Microsensors,Sys- tems and Devices for High-Temperature and Harsh-Environment Ap- plications [ J ]. Industrial Electronics, IEEE, 2001,48 (2) :249-257.
  • 8Butler J C, Vigliotti A J, Verdi F W, et al. Wireless, Passive, Reso- nant-Circuit, Inductively Coupled, Inductive Strain Sensor [ J ]. Sensors and Actuators A : Physical, 2002,102 ( 1 ) : 6 1-66.
  • 9Fonseca M A. Polymer/Ceramic Wireless MEMS Pressure Sensors for Harsh Environments:High Temperature and Biomedical Appli-cations [ D ]. Atlanta : Georgia Institute of Technology, 2007.
  • 10张肃文.高频电子线路[M].北京:高等教育出版社,2014:68-69.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部