期刊文献+

基于[C_(10)-mim^+]Br^-固定HRP于Au/石墨烯复合材料电极表面的新型H_2O_2酶生物传感器 被引量:2

Novel H_2O_2 enzyme biosensor based[C_(10)-mim^+]Br^-fixed HRP on Au/graphene nanocomposite electrode
下载PDF
导出
摘要 利用长链离子液体特殊的性质,用其固定HRP于Au/graphene电极表面(Nafion/HRP/[C10-mim+]Br-/Au/Gr/GCE)组装成H2O2传感器。用透射电镜来表征Au/氧化石墨烯的形貌,金纳米颗粒很均匀的分散在石墨烯表面,并不存在团聚现像。电化学技术检测Nafion/HRP/[C10-mim+]Br-/Au/Gr修饰电极对H2O2的响应情况,显示修饰电极对H2O2有很好的响应,在H2O2浓度2.0×10-6~1.2×10-3 mol/L的范围内,还原电流与浓度存在线性关系(R=0.997),检测限为3.0×10-7 mol/L;另外传感器具有很好的稳定性和选择性,为生物分子的检测提供新方法。 Novd nanocomposite materials modified electrode(Nafion/HRP/[C10-mim+] Br/Au/Gr) was prepared by utilizing long chain ionic liquids immobilization HRP (horseradish peroxidase)on Au/graphene electrode surface. The morphologies of the Au/graphene oxide nanoeomposite film were investigated by transmission electron microscopy, the Au nanoparticles were uniformity dispersed on the graphene oxide surface and non-existent rally. Electrochemical response of H2O2 on the electrode was investigated by electrochemical technique including cyclic voltammetry and amperometry. The research results showed that the modified electrode exhibited excellent electrocatalytic effect. Under the optimal experimen- tal conditions, the reduction peak current on the electrode was proportional to the concentration of H2 O2 in the range from 2.0 × 10 -6 -1.2× 10-3 mol/L with a correlation coefficient of 0. 997. The detection limit was 3.0× 10-7 mol/L. Futhermore, the sensor had good stability, selectivity and long life time. The sensor provided new means for the determination of biomol- ecules.
出处 《化工新型材料》 CAS CSCD 北大核心 2014年第3期24-26,共3页 New Chemical Materials
基金 国家自然科学基金项目(20975020 21375016)资助 广东省自然科学基金项目(10151170003000020 S2013010014324)资助 东莞市科技计划项目(201010814013)资助
关键词 [C10-mim+]Br-·Au 石墨烯 H2O2 生物传感器 HRP [C10-mim+ ] Br- Au/graphene, H2 O2, biosensor, HRP
  • 相关文献

参考文献4

二级参考文献172

共引文献33

同被引文献38

  • 1Birringer R, Gleiter H, Klein H-P, et al. Nanocrystalline materials an approach to a novel solid structure with gas- like disorder [J]. Phys Lett A, 1984, 102(8): 365-369.
  • 2Sarikaya M, Tamerler C, Jen A K-Y, et al. Molecular biomimetics: nanotechnology through biology [J]. Nat Mater, 2003, 2(9):577-585.
  • 3Lid~n G. The European commission tries to define nano- materials[J]. Ann Occup Hyg, 2011,55(1): 1-5.
  • 4Zhu C Z, Hart L, Dong S J.Novel Electrochemical Inter- faces Based on Functional Nanomaterials and Their Re- lated Applications[J]. Electrochem,2014,20(3):219-233.
  • 5Iijima S. Helical microtubules of graphitic carbon[J]. Na- ture, 1991, 354(6348): 56-58.
  • 6Ryoo R, Joo S H, Jun S. synthesis of highly ordered car- bon molecular sieves via template-mediated structural transformation[J]. J Phys Chem B,1999,103 (37): 7743- 7746.
  • 7Zhang J J, Zheng T T, Cheng F F, et al. Electrochemical sensing for caspase3 activity ang inhibition using quan- tum dot functionalized carbon nanotubes labels[J]. Chem Commun, 2011, 47(4): 1178-1180.
  • 8Xu B, Wu F, Chen R, et al. Mesoporous activated carbon fiber as electrode material for high-performance electro- chemical double layer capacitors with ionic liquid elec- trolyte[J]. J Power Source, 2010, 195(7): 2118-2124.
  • 9Suresh S, Gupta A, Rao V, et al. Amperometric im- munosensor for ricin by using on graphite and carbon nanotube paste electrodes [J] .Talanta, 2010, 81(1): 703- 708.
  • 10Malhotra R, Patel V, Vaque J P, et al. Uhrasensitive elec- trochemical immunosensor for oral cancer biomarker IL- 6 using carbon nanotube forest electrodes and muhilabel amplification[J]. Anal Chem, 2010, 82(8): 3118-3123.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部