摘要
乳清蛋白水解物的生物利用价值高,水解度是衡量水解物的重要指标之一。基于人工神经网络方法建立了碱性蛋白酶水解乳清蛋白的水解模型。利用Matlab的nnet工具包中的nftool建立神经网络模型。实验中设置了15个隐藏神经元,选用Levenberg-Marquardt训练算法迭代计算。实验结果表明:测试值与输出值的误差平均较小,拟合回归得到的整体R2=0.97995,测试集合的R2=0.96239,表明神经网络拟合效果和预测能力良好,能够较好地完成水解度预测的目标,选用的测试组的实验结果与神经网络输出值之间的误差均在±3%以内,说明此神经网络预测模型具有较高的预测能力和精度。
The whey protein hydrolyzate with high value bioacailability, the degree of hydrolysis (DH%)is an important indicator to evaluate the hydrolysate.An artificial neural network(ANN)model was used to predict whey protein hydrolysis process.Analyses performed on a nftool in the nnet kit of Matlab.15 hidden neurons were set up, and the Levenberg-Marquardt was chosen for training.The results showed the error between test value and output value was slight,fitting regression were overall R2 = 0.97995,the test set R2 = 0.96239,this indicated that the effect and predictive ability of the model was good ,error between experimental and calculated was less 3% ,this model had a high predictive ability and precision.
出处
《食品工业科技》
CAS
CSCD
北大核心
2014年第7期100-103,共4页
Science and Technology of Food Industry
基金
黑龙江省自然科学基金
黑龙江省青年科学基金项目(QC2010029)
关键词
乳清蛋白水解模型
水解度
人工神经网络
whey protein hydrolyzate model
degree of hydrolysis
artificial neural network