期刊文献+

无线传感器网络中带复杂联盟的自适应任务分配算法 被引量:10

Self-adapted task allocation algorithm with complicated coalition in wireless sensor network
下载PDF
导出
摘要 针对无线传感器网络任务调度的实时性及节点计算及能量受限的特点,根据任务截止期赋予任务优先级,优先考虑高优先级任务,设计了一个无线传感器网络中带复杂联盟的自适应任务分配算法。为尽最大努力确保任务在截止期前完成,对截止期较为紧迫的任务采用历史信息生成历史联盟,并执行快速子任务分配算法;而对截止期较为宽裕的任务,在满足任务截止期约束条件下,以节点能耗和网络能量分布平衡为优化目标,采用矩阵的二进制编码形式,设计了一种离散粒子群优化算法以并行生成联盟,并执行基于负载和能量平衡的子任务分配算法。仿真实验结果表明所构造的自适应算法是有效的,在局部求解与全局探索之间能够取得较好的平衡,并能够在较短的时间内取得满意解。 Considering the real-time requirement and some specific limitations (e.g. insufficient computing resource, energy constraint, etc) in task scheduling of wireless sensor networks, different priorities were assigned to tasks according to their deadline, and an adaptive task allocation algorithm with complicated coalition was designed through analyzing historical information. Moreover, a discrete particle swarm optimization algorithm was designed via employing binary matrix coding form. The proposed optimization algorithm generates coalitions in parallel and then performs subtask allo-cation algorithm based on load and energy balance. Finally, the experimental results show that the proposed algorithm strikes a good balance between local solution and global exploration, and achieves a satisfactory result within a short pe-riod of time.
出处 《通信学报》 EI CSCD 北大核心 2014年第3期1-10,共10页 Journal on Communications
基金 国家重点基础研究发展计划("973"计划)基金资助项目(2009CB320503) 国家自然科学基金资助项目(61103175) 教育部科学技术研究重点基金资助项目(212086) 福建省科技创新平台计划基金资助项目(2009J1007) 福建省高校杰出青年科学基金资助项目(JA12016) 福建省高等学校新世纪优秀人才支持计划基金资助项目(JA13021)~~
关键词 无线传感器网络 任务分配 复杂联盟 粒子群优化 wireless sensor network task allocation complicated coalition particle swarm optimization
  • 相关文献

参考文献25

二级参考文献116

共引文献128

同被引文献98

  • 1任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法[J].软件学报,2006,17(3):422-433. 被引量:156
  • 2赵新宇,林作铨.合同网协议中的Agent可信度模型[J].计算机科学,2006,33(6):150-153. 被引量:15
  • 3刘涛,曾国荪,吴长俊.异构网格环境下任务分配的自主计算方法[J].通信学报,2006,27(11):139-143. 被引量:6
  • 4胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 5张志东,孙雨耕,刘洋,杨挺.无线传感器网络能量模型[J].天津大学学报,2007,40(9):1029-1034. 被引量:30
  • 6Shrivastava P, Pokle S B. Energy Efficient Scheduling Strategy for Data Collection in Wireless Sensor Networks E C ://Proceedings of 2014 International Conference on Electronic Systems, Signal Processing and Computing Technologies. Washington D. C. , USA:IEEE Press ,2014 : 170-173.
  • 7Mezei I, Lukic M, Malbasa V, et al. Auctions and iMesh Based Task Assignment in Wireless Sensor and Actuator Networks: J]. Computer Communications ,2013,36 ( 9 ) : 979 -987.
  • 8Jin Y, Vural S, Gluhak A, et al. Dynamic Task Allocation in Multi-hop Multimedia Wireless Sensor Networks with Low Mobility [ J l. Sensors, 2013, 13 (10) : 13998-14028.
  • 9Chen J, Guo W. A PSO-optimized Nash Equilibrium- based Task Scheduling Algorithm for Wireless Sensor Network [ M ]. Berlin, Germany : Springer, 2013 : 62-73.
  • 10Shao Yuanhai, Chen Weijie, Zhang Jingjing, et al. An Efficient Weighted Lagrangian Twin Support Vector Machine for lmbalanced Data Classification [ J ]. Pattern Recognition, 2014,47 ( 9 ) : 3158-3167.

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部