期刊文献+

针对IRA-LDPC码类的半随机半代数结构设计 被引量:3

Semi-random and semi-algebraic structural design for IRA-LDPC codes
下载PDF
导出
摘要 提出用半随机半代数结构的设计方法来构造IRA-LDPC码的信息位所对应的奇偶校验矩阵H d。与现有结构化LDPC码相比,所给出的H d矩阵的结构化紧凑表示阵列的独特优势在于:可使H d矩阵中每个1元素的位置坐标均能用数学表达式计算得到,不仅极大地降低了随机奇偶校验矩阵对存储资源的消耗,而且还为LDPC编解码器的低复杂度硬件实现提供了可能性。与现有工业标准中的LDPC码相比,所提出的IRA-LDPC码在误码率与信噪比的仿真性能方面也占有优势。 A method of semi-random and semi-algebraic structure was presented for constructing the low-density pari-ty-check matrix that corresponds to the information bits of the IRA codes. Compared with the existing structural LDPC codes, the distinct advantage of the presented compact structural array for information-bit-corresponding matrix is that the position coordinate of each 1 element in this matrix can be calculated by a determinate algebraic expression, which not only reduces the consumption of memory resource for the random parity-check matrix, but also provides the potential probability for designing low complexity hardware circuit of the LDPC encoder/decoder. In addition, compared with the existing practical LDPC codes in industrial standard, the presented IRA-LDPC code is also slight preponderance in the performance of simulation in bit error rate and signal noise ratio (BER-SNB).
出处 《通信学报》 EI CSCD 北大核心 2014年第3期77-84,共8页 Journal on Communications
基金 国家自然科学基金资助项目(61071069)~~
关键词 不规则重复积累码(IRA码) 低密度奇偶校验码(LDPC码) 奇偶校验矩阵 整数模”剩余类 整数模n循环群 ulate codes low-density parity-check codes parity-check matrix residue class of in-tegers modulo n cyclic group of integers modulo n
  • 相关文献

参考文献19

  • 1GALLAGER R G Low-Density Parity-Check Codes[M]. Cambridge, MA: MIT Press, 1963.
  • 2MACKAY D J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Trans Info Theory, 1999, 45(3):399-431.
  • 3MACKAY D J C, NEAL R M. Near Shannon limit performance of low-density parity-check codes[J]. Elect Lett, 1996,32:1645-1646.
  • 4Digital Video Broadcasting (DVB), European Standard (Telecommunications Series)[S].2005.
  • 5Air Interface for Fixed and Mobile Broadband wireless Access Systems, IEEE Standard 802.16e[S]. 2006.
  • 6Wireless LAN Medium Access Control (MAC) and Physical Layer , (PRY) Pecifications: Amendment 4: Enhancements for Higher Throughputs, IEEE Standard 802.11n[S]. 2007.
  • 7YU K. Finite Geometry Low Density Check Codes[D]. University of California, 2001.
  • 8TANNER R M, SRlDHARA D, SRlDHARAN A, et al. LDPC block and convolutional codes based on circulant matrices[J]. IEEE Trans Info Theory. 2004, 50(10):2966-2984.
  • 9ZHANG L, LIN S, ABDEL-GHAFFAR K, et al. Quasi-cyclic LDPC codes on cyclic subgroups of [mite fields[J]. IEEE Trans Commun, 2011,59(9): 2330-2336.
  • 10TANG H, XU J, KOU Y, et al. On algebraic construction of gallager and circulant low-density parity-check codes[J]. IEEE Trans Info Theory, 2004, 50(6): 1269-1279.

共引文献144

同被引文献16

  • 1彭立,朱光喜,吴晓晓.基于等差数列的LDPC码编码器设计[J].电子学报,2007,35(5):950-954. 被引量:5
  • 2GALLAGER R. Low-density parity-check codes[ J]. IRE transactions on information theory, 1962,8 ( 1 ) : 21 -28.
  • 3FOSSORIER M P C, M1HALJEVIC M, INAI H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[ J]. IEEE transactions on communications, 1999,47 ( 5 ) : 673 -680.
  • 4CHUANG S Y, FORNEY Jr G D, RICHARDSON T J,et al. On the design of low-density parity-check codes within 0. 0045 dB of the Shannon limit [ J ]. IEEE communications letters, 2001,5 ( 2 ) : 58-60.
  • 5JIN H. Analysis and design of turbo-like codes[ D]. Cali- fornia : California Institute of Technology,2001.
  • 6YANG M, RYAN W E, LI Y. Design of efficiently encod- able moderate-length high-rate irregular LDPC codes[ J]. IEEE transactions on communications, 2004,52 ( 3 ) : 564- 571.
  • 7CHEN P J,ZHU L X, HU Q, et al. PEG algorithm based in- terleavers design for systematic IRA codes[ C]//Proc. 8th International Symposium on Antennas, Propagation and EM Theory ( ISAPE). Kunming : IEEE,2008 : 1458-1461.
  • 8HU X Y, ELEFTHEIOU E, ARNOLD D M. Progressive edge-growth Tanner graphs[ C]//Proc. 2001 Global Tele- communications Conference ( GLOBECOM'01 ). San An- tonio: IEEE, 2001 : 995 - 1001.
  • 9TIAN T, JONES C R,VILLASENOR J D, et al. Selective a- voidance of cycles in irregular LDPC code construction[ J]. IEEE transactions on communications, 2004,52 ( 8 ) : 1242- 1247.
  • 10JIANG X Q,XIA X G, LEE M. Efficient progressive edge- growth algorithm based on chinese remainder theorem [ J ]. IEEE transactions on communications, 2014,62 ( 2 ) : 442- 451.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部