期刊文献+

基于非线性尺度空间的非理想虹膜边界定位 被引量:1

Nonlinear scale-space based boundary localization for nonideal iris
下载PDF
导出
摘要 提出了一种基于非线性尺度空间的非理想虹膜边界定位方法。这一方法通过具有尺度演化特性的非线性扩散消除小尺度的几何结构,保留虹膜的主要边界信息。此外将此扩散与多分辨率分析框架结合,从而实现了虹膜边界的快速有效检测。实验结果表明,与经典方法相比,所提算法能够有效消除上述因素导致的不利影响,精确提取了非理想虹膜的内外边界。 A nonlinear scale-space based localization method of nonideal iris boundaries was proposed. The method eli-minates small-scaled geometric structures while preserving large-scaled iris boundaries by nonlinear diffusions with the scale-evolution property. Moreover it combines such diffusions with the frame of multiresolution analysis, and achieves fast and effective iris boundary detection. Experimental results indicate that compared with the classical methods, the proposed algorithm extract nonideal iris boundaries accurately and efficiently with overcoming the disadvantageous in-fluences of the nonideal factors.
出处 《通信学报》 EI CSCD 北大核心 2014年第3期208-215,共8页 Journal on Communications
基金 国家自然科学基金资助项目(61073138) 济南市高校自主创新基金资助项目(201202018) 山东省自然科学基金资助项目(ZR2013FQ019) 国家重点实验室开放课题基金资助项目(2013-1-1506)~~
关键词 虹膜边界定位 生物特征识别 非线性尺度空间 偏微分方程 iris boundary localization biometrics nonlinear scale-space partial differential equations
  • 相关文献

参考文献20

  • 1JAIN A, ROSS A, PANKANTI S. Biometrics: a tool for information security[J]. IEEE Trans Information Forensics and Security, 2006, 1(2): 125-143.
  • 2DAUGMAN J. How iris recognition works[J]. IEEE Trans Circuits and Systems for Video Technology, 2004, 14(1):21-30.
  • 3BOWYER K, HOLLINGSWORTH K, FLYNN P. Image-understanding for iris biometrics: a survey[J]. Computer Vision and Image Understanding, 2008, 110(2):281-307.
  • 4DAUGMAN J. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1993, 15(11): 1148-1161.
  • 5WILDES R. Iris recognition: an emerging biometrics technology[A]. Proc IEEE[C]. Princeton, NJ, USA, 1997,85(9):1348-1363.
  • 6BOLES W, BOA SHAH B. A human identification technique using images of the iris and wavelet transfonn[J]. IEEE Trans Signal Processing, 1998, 46(4): 1185-1188.
  • 7DAUGMAN J. New methods in iris recognition[J]. IEEE Trans System, Man, and Sybernetics-Part B: Cybernetics, 2007, 37(5): 1167-1175.
  • 8YU L, ZHANG D, WANG K. The relative distance of key point based iris recognition[J]. Pattern Recognition, 2007, 40(2):423-430.
  • 9PROENCA H, ALEXANDRE H. Iris segmentation methodology for non-cooperative recognition[A]. IEEE Proc Y1SP[C]. Covilha, Portugal, 2006,153(2): 199-205.
  • 10PUNDUK S, WOODARD D, BIRCHFIELD S. Non-ideal iris segmentation using graph cuts[A]. Proc IEEE CYPR[C]. Anchorage, Alaska, USA, 2008.1-6.

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部