期刊文献+

双链特异性核酸酶介导的高灵敏度microRNA分析 被引量:3

Double Strand-Specific Nuclease-Assisted Sensitive Detection of MicroRNA
原文传递
导出
摘要 基于氧化石墨烯(GO)对荧光标记单链DNA探针的荧光猝灭效应以及双链特异性核酸酶(DSN)选择性切割DNA/RNA杂合结构中DNA单链的特性,本文建立了一种新型恒温信号放大方法用于microRNA(miRNA)的高灵敏度检测.靶标miRNA首先与荧光DNA探针杂交,DSN能够特异性地将杂合双链中的DNA探针水解为碎片但不会降解miRNA,GO对酶切产生的寡核苷酸碎片吸附能力显著降低,使得荧光基团远离GO表面而不被猝灭.释放出的miRNA可再次发生与荧光DNA探针杂交、DSN酶切等反应,如此反复,可实现恒温条件下一个miRNA分子与多个探针杂交、酶切、释放荧光基团的循环过程,最终体系的荧光信号得到显著放大,通过记录体系的荧光信号即可实现对靶标miRNA的灵敏检测. In this study, a new isothermal signal amplification method is developed for sensitive detection of microRNAs (miRNAs) by integrating the distinct advantages of graphene oxide (GO) for efficient fluorescence quenching of fluorophore-labeled single strand DNA (ssDNA) and double strand (ds)-specific nuclease (DSN) for highly selective digestion of DNA strand in DNA/RNA hybrids. DSN is a nuclease purified from hepatopancreas of Red King crab, which shows a strong preference for cleaving dsDNA and DNA in DNA/RNA hybrid duplexes. On contrast, DSN is practically inactive towards ssDNA or single- or double-stranded RNA. Herein, let-7a is selected as the proof-of-concept target miRNA and a fluorescein-labeled ssDNA probe is designed to be complementary to let-7a. The ssDNA probe, which will not be hydrolyzed by DSN in the absence of let-7a, will be adsorbed on GO via π-π stacking, resulting in efficient fluorescence quenching. When let-7a is introduced, it will hybridize with the ssDNA probe to form a double helix structure (dsDNA). DSN can selectively cleave the DNA oligonucleotides of the DNA/RNA hybrid to produce very small DNA fragments. Let-7a is thus released and will hybridize with another ssDNA probe again, which will be further cleaved by DSN. In this manner, each let-7a molecule can specifically trigger various cycles of hybridization and DSN cleavage of fluorescent ssDNA to yield numerous small fragments of DNA oligonucleotides. It should be noted that the π-π stacking interaction between GO and the very small DNA fragments bearing the fluorophores will be remarkably weakened, making the fluorescence maintained. Therefore, the DSN-mediated cycling of fluorescent ssDNA cleavage greatly amplifies the fluorescence signal for miRNA detection. Under the optimized experimental conditions, the fluorescence signal is proportional linearly to the concentration of let-7a in the range from 100 pmol/L to 5 nmol/L, and the detection limit is calculated to be 60 pmol/L (3σ). Furthermore, this proposed approach can also be applied to the simultaneous detection of multiplex miRNA targets.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2014年第3期395-400,共6页 Acta Chimica Sinica
基金 国家自然科学基金(Nos.21105020 20905018) 河北大学引进人才项目(No.2009177)资助~~
关键词 MICRORNA 双链特异性核酸酶 氧化石墨烯 恒温信号扩增 荧光 microRNA double strand-specific nuclease graphene oxide isothermal signal amplification fluorescence
  • 相关文献

参考文献29

  • 1Can'ington, J. C.; Ambros, V. Science 2003, 301, 336.
  • 2Lewis, B. P.; Burge, C. B.; Bartel, D. P. Ce112005, 120, 15.
  • 3Dong, H. F.; Lei, J. P.; Ding, L.; Wen, Y. Q.; Ju, H. X.; Zhang, X. J. Chem. Rev. 2013, 113, 6207.
  • 4Calin, G. A.; Dumitru, C. D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; Rassenti, L.; Kipps, T.; Negrini, M.; Bullrich, F.; Croce, C. M. Proc. Natl. Acad. Sci. 2002, 99, 15524.
  • 5Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Science 2001, 294, 853.
  • 6Liu, C. G.; Calin, G. A.; Meloon, B.; Gamliel, N.; Sevignani, C.; Ferracin, M.; Dumitru, C. D.; Shimizu, M.; Zupo, S.; Dono, M.; Al- der, H.; Bullrich, F.; Negrini, M4 Croce, C. M. Proc. Natl. Acad. Sci. 2004, 101, 9740.
  • 7Thomson, J. M.; Parker, J.; Perou, C. M.; Hammond, S. M. Nat. Methods 2004, 1, 47.
  • 8Raymond, C. K.; Roberts, B. S.; Garrett-Engele, P.; Lira, L. P.; Johnson, J. M. RNA 2005, 11, 1737.
  • 9Jonstrup, S. P.; Koch, J,; Kjems, J. RNA 2006, 12, 1747.
  • 10Cheng, Y. Q.; Zhang, X.; Li, Z. P.; Jiao, X. X.; Wang, Y. C.; Zhang,Y. L. Angew. Chem., Int. Ed. 2009, 48, 3268.

同被引文献49

  • 1Barrel D. P. , Cell, 2004, 116, 281-297.
  • 2Winter J. , Jung S. , Keller S. , Gregnry R. I. , Diederichs S. , Nat. Cell Biol. , 2009, 11, 228-234.
  • 3Farh K. K. H. , Grimson A. , Jan C. , Lewis B. P. , Johnston W. K. , Lira L. P. , BurgeC. B. , Bartel D. P. , Science, 2005, 310 1817-1821.
  • 4Young D. D. , Connelly C. M. , Grohamann C. , J. Am. Chem. Soc. , 2010, 132, 7976-7981.
  • 5Chang J., Nicolas E., Marks D., RNA Biol. , 2004, 1, 106-113.
  • 6Calin G. A. , Croce C. M. , Nat. Rev. Cancer, 2006, 6, 857-866.
  • 7Pall G. S. , Codony-Servat C. , Byrne J. , Nucleic Acids Res. , 2007, 35, e60.
  • 8Nelson P. T. , Baldwin D. A. , Scearce L. M. , Nat. Methods, 2004, 1, 155-161.
  • 9Li J. , Yao B. , Huang H. , Anal. Chem. , 2009, 81, 5446-5451.
  • 10Persat A. , Santiago J. G. , Anal. Chem. , 2011, 83, 2310-2316.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部