期刊文献+

基于改进最佳极限偏差法的弧面凸轮机构公差分配研究 被引量:1

Research on Tolerance Allocation of Globoidal Cam Mechanism Based on Improved Optimal Limit Deviation Method
下载PDF
导出
摘要 基于空间啮合理论推导了含误差的弧面凸轮机构啮合方程,采用微分分析法推导了影响弧面凸轮机构运动精度的各误差因素的影响系数表达式。结合各误差影响系数,探讨了弧面凸轮机构的简易公差分配法,然后综合考虑加工成本、尺寸因素、装配性能等工程实际,提出了弧面凸轮机构改进最佳极限偏差公差分配法。用这两种方法对某型弧面凸轮机构进行了公差分配,结果表明采用改进最佳极限偏差法更为合理。对弧面凸轮机构的公差分配进行了有益的探索,同时也为其他空间共轭传动机构的公差分配提供了一定的借鉴。 Based on the meshing theory,the meshing equations of a globoidal cam mechanism with error were deduced.By using the differential method,the motion accuracy influence coefficient expressions of the globoid cam mechanism were obtained.Firstly a simple tolerance allocation method was proposed.Then the improved optimal limit deviation tolerance allocation method was proposed by comprehensively considering the processing cost,size and the assembly performance of practical engineering.On the basis of that,the globoidal cam mechanism tolerance allocation problems were discussed.Targeted to a specific globoidal cam mechanism transmission system example,the tolerance distribution problems were solved by using two methods.The results show that the improved optimal limit deviation method is reasonable.A tolerance allocation method is provided for the globoidal cam mechanism,and provides reference for other spatial conjugate transmission mechanism tolerance allocation.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2014年第6期731-736,共6页 China Mechanical Engineering
基金 湖南省自然科学省市(湘潭)联合基金资助一般项目(13JJ9005) 湖南省科技厅重点资助项目(2010GK2027) 湘潭大学自然科学基金资助项目(10XZX14)
关键词 弧面凸轮机构 含误差啮合方程 改进最佳极限偏差法 公差分配 globoidal cam mechanism meshing equation with error improved optimal limit deviation method tolerance allocation
  • 相关文献

参考文献9

二级参考文献44

  • 1张琳娜,赵凤霞,李晓沛,常永昌,黄瑞.现代产品几何技术规范(GPS)体系的理论基础及关键技术研究[J].机械强度,2004,26(5):547-551. 被引量:19
  • 2谢能刚,方浩,包家,汉赵雷.博弈决策分析在补偿滑轮组变幅机构多目标设计中的应用[J].机械强度,2005,27(2):202-206. 被引量:21
  • 3杨玉琥,陆锡年,孟彩芳,张宝兴.蜗杆凸轮机构精确度分析[J].天津大学学报,1995,28(1):61-67. 被引量:9
  • 4Chase K W, Magleby S P. A Comprehensive System for Computer Aided Tolerance Analysis of 2--D and 3 D Mechanical Assemblies[C]//CIRP. Proceedings of 5th Seminars on Computer Aided Tolerancing. Toronto, Canada, 1997 : 294-307.
  • 5Gao J, Chase K W, Magleby S P. Generalized 3- D Tolerance Analysis of Mechanical Assemblies with Small Kinematic Adjustments[J]. liE Transactions, 1998,30(4) :367-377.
  • 6ISO/TS. 17450 1 : 2000 (E) Geometrical Product Specifications (GPS) -- General Concepts, Part 2 : Model for Geometrical Specification and Verification [S]. ISO/TC213,1999.
  • 7Wang Haoyu, Nilmani P, Utpal R, et al. A Scheme for Mapping Tolerance Specifications to Generalized Deviation Space for Use in Tolerance Synthesis and Analysis[J]. IEEE Transactions on Automation Science and Engineering,2006,3:81-91.
  • 8Teissandier D, Couetard Y, Gerard A. A Computer Aided Tolerancing Model: Proportioned Assembly Clearance Volume [J]. Journal of Computer Aided Design, 1999,31:805-817.
  • 9CHASE K W,GREENWOOD W H,LOOSLI B G,et al.Least cost tolerance allocation for mechanical assemblies with automated process selection[J].Manufacturing Review,1990,3(1):49-59.
  • 10DUPINET E,BALAZINSKI M,CZOGALA E.Tolerance allocation based on fuzzy logic and simulated annealing[J].Journal of Intelligent Manufacturing,1996,7(6):487-497.

共引文献68

同被引文献20

  • 1Manupati V K, Thakkar J J, Wong K Y, Tiwari M K. Near optimal process plan selection for multiple jobs in networked based manufacturing using multi-objective evolutionary algorithms. Computers & Industrial Engineering, 2013, 66(1): 63-76.
  • 2Kanyalkar A P, Adil G K. An integrated aggregate and detailed planning in a multi-site pro- duction environment using linear programming. International Journal of Production Economics, 2005, 43(20): 4431-4454.
  • 3Lin H W, Nagalingam S V, Kuik S S, Murata T. Design of a global decision support system for a manufacturing SME: Towards participating in collaborative manufacturing. International Journal of Production Economics, 2012, 136(1): 1-12.
  • 4Tseng Y J, Kao Y W, Huang F Y. A model for evaluating a design change and the distributed manufacturing operations in a collaborative manufacturing environment. Computers in Industry, 2008, 59(8): 798-807.
  • 5Mansouri S A, Gallear D, Askariazad M H. Decision support for build-to-order supply chain man- agement through multiobjective optimization. International Journal of Production Economics, 2012, 135(1): 24-36.
  • 6Yu D, Jin J H, Ceglarek D, Shi J J. Process-oriented tolerancing for multi-station assembly systems. IIE Transactions, 2005, 37(6): 493-508.
  • 7Tseng Y J, Huang F Y. A multi-plant tolerance allocation model for products manufactured in a multi-plant collaborative manufacturing environment. International Journal of Production Research, 2009, 47(3): 733 749.
  • 8Mustajib M I. Model Simultan Penentuan Komponen Produk Rakitan dan Pabrik dalam Kolab- orasi Manufaktur Make-to-order. Journal Teknik Industry, 2010, 12(2): 109-118.
  • 9Wang X Q, Tang J F. A scatter search approach with dispatching rules for a joint decision of cell formation and parts scheduling in batches. International Journal of Production Research, 2010, 48(12): 3513-3534.
  • 10Molina J, Laguna M, Marti R, Caballero R. SSPMO: A scatter Tabu search procedure for non- linear multiobjective optimization. Informs Jour"nal on Computing, 2007, 19(1): 91-100.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部