期刊文献+

基于爆能等效原理大型模爆器燃气爆炸冲击加载的数值模拟 被引量:7

Numerical simulation on shock waves generated by explosive mixture gas from large nuclear blast load generator based on equivalent-energy principles
下载PDF
导出
摘要 运用非线性显式动力有限元程序LS-DYNA,基于多物质Euler算法,对TNT炸药和乙炔-空气混合气体两种爆炸源在自由大气场中爆炸产生的冲击波荷载特征参数进行数值模拟,比较两种爆源产生的冲击波压力传播规律。基于爆能等效原理,按超压相等的原则给出了气体爆炸名义比例距离计算公式。结果表明,基于Euler算法可以较好地描述乙炔-空气混合气体爆炸空气冲击波传播规律,爆炸压力随着距爆源距离的增大而迅速衰减,且两种爆源产生的冲击波超压峰值误差随着冲击波传播距离的增大而逐渐减小。采用名义比例距离公式修正后,气体爆炸与炸药爆炸冲击波计算误差可以得到有效控制。当爆炸冲击波超压小于0.5MPa时,可以采用乙炔-空气混合气体代替化学炸药进行模爆器内爆炸实验加载。 Based on the nonlinear explicit dynamic finite element program LS-DYNA and the multi-ma- terial Euler algorithm, the shock wave propagations were numerically simulated for the two explosion resources of the TNT dynamite and the acetylene-air gaseous mixture in free air field, respectively. The overpressures of the shock waves and the propagation principles were compared between the two blast-loading methods. Based on the equivalent-explosion energy, a formula for calculating the nomi- nal scale distance of gas explosion was obtained in terms of overpressure. The results show that the Euler method can be used to calculate the propagation process of two kinds of explosion sources and the numerical results agree well with the ones based on the empirical equations. With the increasing of the propagation distances, the overpressures decrease sharply and the overpressure relative error be- tween the two load methods decreases gradually. When the shock wave overpressure was lower than 0.5 MPa, the acetylene-air gaseous mixture can replace the chemical dynamite for generating blast shock waves by the large nuclear blast load generator.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2014年第1期80-86,共7页 Explosion and Shock Waves
基金 国家自然科学基金项目(51078116)~~
关键词 爆炸力学 空气冲击波 能量等效原理 可燃气体 Euler算法 大型模爆器 mechanics of explosion air shock wave equivalent energy principle explosive gas Euler algorithm large nuclear blast load generator
  • 相关文献

参考文献9

  • 1欧进萍,张春巍,张晓漪,等.大型模爆器综合试验系统研制、改造与应用[C]//中国土木工程学会防护工程分会第十次学术年会.乌鲁木齐,2006.
  • 2张春巍.结构抗爆抗冲击与振动控制的若干问题研究[R].哈尔滨:哈尔滨工业大学,2007.
  • 3李生娟,毕明树,章正军,丁信伟.气体爆炸研究现状及发展趋势[J].化工装备技术,2002,23(6):15-19. 被引量:14
  • 4Benson O J. Computational methods in Lagrangian and Eulerian hydrocodes[J]. Computer Methods in Applied Mechanics and Engineering, 1992,99:235-394.
  • 5LS-DYNA keyword user's manual: Version 971[M]. Livermore California: Livermore Software Technology Corporation, 2006.
  • 6Smith P D, Hetherington J G. Blast and ballistic loading structures[M]. Butterworth-Heinemann Ltd, 1994: 30- 166.
  • 7Mays G C, Smith P D. Blast effects on buildings[M]. London: Thomas Telford Publications, 1995: 24-50.
  • 8Baker W E. Explosions in air[M]. Austin, TX: University of Texas Press, 1973:7-15.
  • 9王飞,朱立新,顾文彬,茼茂辉,王清洁.基于ALE算法的空气冲击波绕流数值模拟研究[J].工程爆破,2002,8(2):13-16. 被引量:20

二级参考文献29

  • 1徐胜利,糜仲春,汤明钧.无约束云雾产生爆炸场的数值模拟[J].南京理工大学学报,1994,18(5):1-7. 被引量:4
  • 2张雄,陆明万,王建军.任意拉格朗日-欧拉描述法研究进展[J].计算力学学报,1997,14(1):91-102. 被引量:104
  • 3章根德.岩石对冲击载荷的动态响应[J].爆炸与冲击,1982,2(2):1-9.
  • 4曹树鼎.化爆空气冲击波参数实验数据的经验拟合[J].爆炸与冲击,1982,4(2):102-120.
  • 5叶序双.爆炸作用基础[M].南京:工程兵工程学院,1996..
  • 6曹国栋.爆破[M].南京:工程兵工程学院出版社,1993.
  • 7松佐夫H H.水下及空中爆炸理论基础[M].北京:国防工业出版社,1965.
  • 8Gilbert F K,Kenneth J G.Explosive Shocks in Air[M].2nd ed.Berlin:Springer-Verlag,1985.
  • 9Fox L K.Nonlinear Response of Cylindrical Shells to Underwater Explosion[A].Testing and Numerical Prediction Using USA/DYNA3D AK-A251 945[C],Mar.1992.
  • 10Chan S K.An Improvement in the Modified Finite Element Procedure for Underwater Shock Analysis[A].Proceeding of 62nd Shock and Vibration Symposium[C],Oct.1992.

共引文献32

同被引文献74

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部