期刊文献+

一种去除Gamma乘性噪声的全变分模型 被引量:3

A Novel Total Variational Model for Gamma Multiplicative Noise Removal
下载PDF
导出
摘要 针对现有的去除图像乘性噪声变分模型存在"阶梯效应"和图像模糊等问题,提出了一种具有严格凸性的去除图像Gamma乘性噪声的全变分新模型。首先,通过分析Gamma噪声的数学特征,采用最大似然估计方法和贝叶斯公式导出了全变分模型的保真项,引入协调项,并利用一种新颖的混合测度构造了新的模型。再使用交替迭代最优化算法,给出了数值解,并从理论上证明了该迭代序列的收敛性。实验结果表明,本模型有很好的去噪效果,在有效抑制图像中的"阶梯效应"的同时能更多地保留图像的纹理细节特征。 A novel total variational model with strict convexity was proposed to solve the problem that the' step-casing effect' and image blurring are always with the existing variational models for multiplicative noise removal. Firstly, the fidelity term of the modified model was derived by applying the maximum likelihood estimate method and the Bayesian formulation. Then, the new total variational modal was developed by combining the fidelity term, a fitting term and a hybrid measurement. An alternating minimization algorithm was used to find out the minimizer of such an objective function and proved the convergence for the variational problem. Finally, the numerical ex- periments showed that the texture details in the denoised images are kept and the ' step-casing effect' is suppressed.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2014年第2期59-65,共7页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(11071266) 重庆市教委科研基金资助项目(KJ100505)
关键词 图像去噪 乘性噪声 变分法 凸函数 image denosing multiplicative noise variational approach convex function
  • 相关文献

参考文献22

  • 1霍春雷,程健,卢汉清,周志鑫.基于多尺度融合的对象级变化检测新方法[J].自动化学报,2008,34(3):251-257. 被引量:32
  • 2刘彦,蒲亦非,周激流.一种基于分数阶积分的数字图像去噪算法[J].四川大学学报(工程科学版),2011,43(3):90-95. 被引量:11
  • 3阮秋琦.数字图像处理学[M].北京:电子工业出版社,2007.
  • 4Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D : Nonlinear Phenom- ena, 1992,60 ( 1 ) :259 - 268.
  • 5Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time [ J ]. IEEE Transactions on Image Processing, 2003, 12 ( 12 ) : 1579 - 1590.
  • 6Osher S, Burger M, Goldfarb D, et al. An iterative regulariza- tion method for total variation-based image restoration [ J ]. Multiscale Modeling & Simulation, 2005,4 (2) :460 - 489.
  • 7Jin Z, Yang X. Analysis of a new variational model for multi- plicative noise removal [ J ]. Journal of Mathematical Analy- sis and Applications ,2010,362 (2) :415 - 426.
  • 8Shih Y, Rei C, Wang H. A novel PDE based image restora- tion: Convection-diffusion equation for image denoising[ J]. Journal of Computational and Applied Mathematics, 2009, 231 (2) :771 -779.
  • 9Allard W K. Total variation regularization for image denois- ing, I. Geometric theory [ J ]. SIAM Journal on Mathematical Analysis,2007,39 (4) : 1150 - 1190.
  • 10Aubert G, Aujol J F. A variational approach to removing multiplicative noise [ J ]. SIAM Journal on Applied Mathe- matics,2008,68 (4) :925 - 946.

二级参考文献72

  • 1蒲亦非,袁晓,廖科,陈忠林,周激流.现代信号分析与处理中分数阶微积分的五种数值实现算法[J].四川大学学报(工程科学版),2005,37(5):118-124. 被引量:31
  • 2GONZALEZ R C.数字图像处理[M].第2版.阮秋琦,阮宇智,译.北京:电子工业出版社,2004.
  • 3Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [ J ]. IEEE Transactions on PAMI, 1990,12 (7) :629 -639.
  • 4Kim Hye Suk, Cho Yeong Joo. Anisotropic diffusion for preserving boundary-edge [ C ]//Advanced Communication Technology, 2010. The 12^th ICACT International Confemce on,2010(2) :1693 - 1698.
  • 5Zeng Xiangyan, Chen Yenwei, Tao Caixia. Denoising by anisotropic diffusion in ICA subspace [ C ]//Intelligent Information Hiding and Multimedia Signal Processing, 2009. IIHMSP '09 Fifth International Conference on, 2009:1201 - 1204.
  • 6Chen Qiang, Montesinos P, Sun Quansen, et al. Adaptive total variation denoising based on difference curvature[ J]. Image and Vision Computing,2010,28 (3) :298 - 306.
  • 7Salmon J. On two parameters for denoising with non-local means [ J ]. Signal Processing Letters, IEEE, 2010, 17 ( 3 ) : 269 - 272.
  • 8Oldham K B, Spanier. The fractional calculus : integrations and differentiations of arbitrary order [ M ]. New York : Academic, 1974.
  • 9McBride A C. Fractional calculus [ M ]. New York: Halsted Press, 1986.
  • 10Pu Yifei, Zhou Jiliu, Yuan Xiao. Fractional differential mask:a fractional differential-based approach for multiscale texture enhancement [ J ]. IEEE Trans on Image Processing, 2010,19(2) :491 -511.

共引文献117

同被引文献23

  • 1陈智罡,宋新霞,张延红.基于Binary-LWE噪音控制优化的全同态加密方案与安全参数分析[J].四川大学学报(工程科学版),2015,47(2):75-81. 被引量:8
  • 2张红英,彭启琮.变分图像复原中PDE的推导及其数值实现[J].计算机工程与科学,2006,28(6):44-46. 被引量:11
  • 3Rudin L,Lions P,Osher S ,et al. Multiplicative denoising and deblurring :theory and algorithm [ M ]//Geometric level set methods in imaging, vision, and graphics. New York:Spring- er,2003 : 103-119.
  • 4Aubert G, Aujol J F. A variational approach to removing multiplicative noise [ J ]. SIAM Journal on Applied Mathe- matics ,2008,68 (4) :925-946.
  • 5Jin Z, Yang X. Analysis of a new variational model for multi- plicative noise removal [ J ]. Journal of Mathematical Analysisand Applications ,2010,362(2) :415-426.
  • 6Huang Y,Ng M,Wen Y. A new total variation method for mul- tiplicative noise removal [ J ]. SIAM Journal on Imaging Sci- ences ,2009,2( 1 ) :20-40.
  • 7Donoho D L, Johnstone M. Adapting to unknown smoothness via wavelet shrinkage [ J ]. Journal tff the American Statistical Association, 1995,90 (432) : 1200 - 1224.
  • 8Geman D, Geman S. Stochastic relaxation, Gibbs distribu- tions, and the Bayesian restoration of images [ J ]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 1984 (6) :721-741.
  • 9Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D : Nonlinear Phenome- na, 1992,60( 1 ) :259-268.
  • 10Strong D M, Chan T F. Spatially and scale adaptive total varia- tion based regularization and anisotropic diffusion in image processing[ C ]//Diusion in image processing, UCLA math de-partment cam report. [ s. 1. ]: [ s. n. ] ,1996.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部