摘要
建立了自适应网络上的SIV(susceptible-infected-vaccinated)模型.在该模型中,接种的个体由于疫苗的不完全有效而会被感染.假设只有易感态个体采用重连机制进行自我保护,这一机制使得网络拓扑结构和疾病传播共同演化.通过平均场近似并求解方程,发现了丰富的动力学现象,如双稳态和周期振荡.网络的演化也趋于单峰度分布和负相关性.
An SIV (susceptible-infected-vaccinated) model including susceptible, infected and vaccinated compartments on an adaptive network has been studied. In this model, vaccinated nodes can be infected, due to leaky vaccination, and only the susceptible individuals rewire their network connections to avoid the contact with the infected. These mechanisms lead to the co-evolution of the epidemic spreading and the network structure. Bistability and oscillations emerge in certain parameter region. Degree distributions are altered and degree correlation arises.
出处
《应用数学与计算数学学报》
2014年第1期10-16,共7页
Communication on Applied Mathematics and Computation
基金
国家自然科学基金资助项目(10805033)
关键词
复杂网络
流行病
分支
complex network
epidemiology
bifurcation