期刊文献+

两物种抛物-抛物排斥趋化模型解的渐进行为 被引量:1

Asymptotic Behavior of Solutions to a Parabolic-Parabolic Repulsion Chemotaxis Model with Two Species
下载PDF
导出
摘要 两物种抛物-抛物排斥趋化模型描述了两不同物种对同一种化学物质产生趋化排斥作用.对于充分光滑的初始数据,利用压缩不动点定理和先验估计技巧,证明了该模型存在唯一且有界的整体光滑解,并利用Lyapunov泛函证明了该整体解指数收敛到常数稳态解. A parabolic-parabolic repulsion chemotaxis model with two species considers two different species interacting with repulsive signaling chemicals. By the fixed-point argument and a priori estimate technique, the first result can be stated that the model admits a unique global smooth solution which is uniformly-in-time bounded, provided initial data is smooth. Moreover, based on a Lyapunov functional, the second result is established that this solution converges to a stationary solution as time goes to infinity.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期145-150,共6页 Journal of Donghua University(Natural Science)
关键词 趋化性 整体存在性 有界性 收敛性 chemotaxis global existence boundedness convergence
  • 相关文献

参考文献14

  • 1KELI.ER E F, SEGEL L A. Initation of slime mold aggregation viewed as an instability [J].J Theor Biol, 1970,26 (3) :399-415.
  • 2HILLEN T, PAINTER K. A users' guide to PDE models for chemotaxis [ J]. J Math Biol, 2009,58(1/2):183-217.
  • 3HORSTMANN D. From 1970 until present: the Keller-Segel model in ehemotaxis and its consequences [J].Jahresber der Deutsch Math-Verein, 2003,105(3) : 103-165.
  • 4WANG Z A, HILLEN T. Classical solutions and pattern formation for a volume filling chemotaxis model [J]. Chaos, 2007,17(3), 037108.
  • 5WINKLER M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model [J ]. J Differential Equations, 2010,248(12) : 2889-2905.
  • 6LUCA M, CHAVEZ-ROSS A, EDELSTEIN-KESHET L, et al. Chemotaetic signalling, microglia, and Alzheimer's disease senile plague: ls there a connection? [J]. Bull Math Biol, 2003,65(4) :673-730.
  • 7TAO Y S, WANG Z A. Competing effects of attraction vs. repulsion in chemotaxis [ J ]. Mathematical Models and Methods in Applied Sciences, 2013,23( 1):1-33.
  • 8PAINTER K, HILLEN T. Volume filling and quorum-sensing in models for chemosensitive movement [J]. Canad Appl Math Quart, 2002,10(4) :501-543.
  • 9HORSTMANN D, WINKLER M. Boundedness vs. blow-up in a ehemotaxis system [J]. J Differential Equations, 2005,215 (1) :52-107.
  • 10KOWALCZYK R, SZYMA NSKA Z. On the global existence of solutions to an aggregation model [J]. J Math Anal Appl, 2008,343(1) :379-398.

同被引文献13

  • 1Yoshikazu Giga,Hermann Sohr.Abstract $L\sp p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. Journal of Functional Analysis . 1991
  • 2Youshan Tao.??Boundedness in a chemotaxis model with oxygen consumption by bacteria(J)Journal of Mathematical Analysis and Applications . 2011 (2)
  • 3Youshan Tao,Chun Cui.??A density-dependent chemotaxis–haptotaxis system modeling cancer invasion(J)Journal of Mathematical Analysis and Applications . 2010 (2)
  • 4M A J CHAPLAIN,G LOLAS.MATHEMATICAL MODELLING OF CANCER CELL INVASION OF TISSUE: THE ROLE OF THE UROKINASE PLASMINOGEN ACTIVATION SYSTEM. Mathematical Models and Methods in Applied Sciences . 2005
  • 5Dirk Horstmann,Michael Winkler.??Boundedness vs. blow-up in a chemotaxis system(J)Journal of Differential Equations . 2005 (1)
  • 6Michael Winkler.??Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening(J)Journal of Differential Equations . 2014
  • 7Keller E F,Segel L A.Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology . 1970
  • 8N.D. Alikakos.??LP Bounds of solutions of reaction-diffusion equations(J)Communications in Partial Differential Equations . 1979 (8)
  • 9Tao, Youshan,Winkler, Michael.A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source*. SIAM Journal on Mathematical Analysis . 2011
  • 10Youshan Tao,Michael Winkler.??Energy-type estimates and global solvability in a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant(J)Journal of Differential Equations . 2014 (3)

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部