期刊文献+

阶梯攀爬服务智能机器人重心调节系统设计 被引量:2

Design of Gravity Center Regulation System of Stair Climbing Intelligent Service Robot
原文传递
导出
摘要 针对日常生活中未安装电梯的低楼层货物搬运问题,设计了一种阶梯攀爬服务智能机器人。重心系统是机器人实现爬楼梯动作的关键装置,设计的攀爬机器人采用重心调节系统,调节机器人的重心处于变形轮和后轮之间,使4个车轮在平地行进和攀爬楼梯时受力均匀。当机器人攀爬阶梯时,通过舵机带动连杆,使重心向前轮方向转移,增大前轮的抓地力,减少后轮受力,提高攀爬和搬运的平稳性。物理样机在实际台阶地形中进行了攀爬实验,实践验证了设计的机器人重心调节系统能够很好地解决机器人在平地、阶梯等不同环境下的行走及货物搬运问题。 Aiming at the cargo handling problem of the low floors uninstalled the elevator in the daily life, it is necessary to design an intelligent service robot to climb ladder. The gravity center regu- lating system is the key device of the robot to climb the stairs. It used the designing robot can adjust the center of gravity of robot between the deformation wheels and the rear wheels and keep the force u- niform of four wheels in the plains and climbing the stairs. When the robot climbing stairs, the center of gravity transfers to front wheel direction by the servo rotating a certain angle to drive connecting rod, increasing the grip of the front wheels, reducing rear wheel stress to improve the stability of climbing and handling. The stair climbing test of physical prototype is completed in the actual terrain. The designed gravity center regulating system of climbing robot can solve the robot walking and the cargo handling problems on the plains, the ladder and in different environments is verified by practice.
出处 《机械传动》 CSCD 北大核心 2014年第3期102-104,共3页 Journal of Mechanical Transmission
关键词 服务机器人 阶梯攀爬 重心调节 轻质设计 Service robot Stair climbing Gravity center regulation Lightweight design
  • 相关文献

参考文献6

二级参考文献17

  • 1赵忆文 谈大龙.基于速度势场的移动障碍物局部在线避碰[A]..Proceedings of the 3rd WCICA[C].Hefei:P R China,Jun 28-Jun 2,2000.1271-1274.
  • 2iRobot Corporation. Small Unmanned Ground Vehicle (SUGV) [EB/OL]. (2008-05-12) [2009-03-18]. http://www.irobot.com/ sp.cfm?pageid=219.
  • 3Chiba Institute of Technology. Hibiscus, The New Rescue Robot[EB/OL]. (2006-06-05) [2009-03-18]. http://www. techfresh.net/hibiscus-the-new-rescue-robot.
  • 4Chen C X, Trivedi M M. Reactive locomotion control of articulated-tracked mobile robots for obstacle negotiation[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 1993: 1349-1356.
  • 5Choi B S, Song S M. Fully automated obstacle-crossing gaits for walking machines[J]. IEEE Transactions on Systems, Man and Cybernetics, 1998, 18(6): 952-964.
  • 6Liu J G, Wang Y C, Ma S G, et al. Analysis of stairs-climbing ability for a tracked reconfigurable modular robot[C]//IEEE International Workshop on Safety, Security and Rescue Robotics. Piscataway, NJ, USA: IEEE, 2005: 36-41.
  • 7Miura Jun,Yoshiaki Shirai.Modeling motion uncertainty of moving obstacles of robot motion planning[A].In Proe 2000 IEEE Int.Conf.on Robotics and Automation[C].2258-2263.
  • 8Hong Zhang,Vijay Kumar,Jim Ostrowski.Montion planning with uncertainty EA].Proceedings of the 1998 IEEE International Conference on Robotics &Automation Leuven[C].Belgium:May 1998.638—643.
  • 9Thorsten Sehmitt,Michael Beetz,Robert Hanek.sebastian Buck.Watch their moves:Apply probabilistic multiple obiect tracking to autonomous robot soccer(WWW.aaai.org).
  • 10In Hyuk Moon,Jun Miura,Yoshiharu and Yoshiaki Shirai.PIanning of vision—based navigation for a mobile robot under uncertainty[A].Proc of 1997 IEEE/RSJ Int conf on InteIligent Robots and Systems[C].Grenoble,France,September 1997.1202-1207.

共引文献114

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部