期刊文献+

基于自适应粒子滤波算法的对海跟踪研究 被引量:3

A Study on Ship Tracking Based on Adaptive Particle Filter
下载PDF
导出
摘要 机载雷达对海面慢速运动目标跟踪时存在非高斯非线性状态估计问题,传统的卡尔曼滤波器跟踪不仅会产生目标定位偏差,而且会造成航迹起伏。文中将自适应粒子滤波算法应用到具有闪烁噪声背景下的海面目标跟踪问题中,此算法可根据预测粒子在状态空间中的分布情况自适应选择粒子数量,从而在保证跟踪精度的同时减少了算法的运算量。仿真结果表明,自适应粒子滤波器可实现对闪烁噪声背景下的慢速目标高精度定位跟踪,且跟踪性能优于标准粒子滤波器,具有工程实用价值。 Locating remote slow sea-surface targets with airborne radar is a problem of the non-linear and non-Gaussian state estima- tion, resulting in the deviation of the target location and the track jitter when track jitter dealing with traditional Kalman filter. In this paper, adaptive particle filter (PF) is used to solve the ship tracking problem under glint noise. The algorithm can choose the number of particles based on KLD-sampling, which is efficient and has smaller time consumption. Computer simulation proves that adaptive particle filter can quickly realize slow target tracking under glint noise, and the tracking performance is superior to that of standard PF and that adaptive PF is practically valuable for engineering use.
出处 《现代雷达》 CSCD 北大核心 2014年第3期49-52,共4页 Modern Radar
关键词 对海跟踪 自适应粒子滤波 闪烁噪声 非高斯 非线性 ship tracking adaptive particle filter glint noise non-Gaussian nonlinear
  • 相关文献

参考文献8

  • 1Masreliez D J, Martin R D. Robust Bayesian estimation for the linear model and robustifying the Kalman filter [ J ]. IEEE Transactions on Automatic Control, 1977, 22(3) : 361-371.
  • 2Hewer G A, Martin R D, Zeh J. Robust preprocessing for Kalman filtering of glint noise [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1987,23 (1) : 120-128.
  • 3李保国,肖怀铁,王远模,刘义和,付强.角闪烁背景下基于粒子滤波器的跟踪研究[J].现代雷达,2006,28(2):54-56. 被引量:9
  • 4Gordon N J, Salmond D J, Santh A F M. Novel approach to nonlinear/non-Guassian Bayesian states estimation [ J ]. IEEE Processing on Radar and Signal Processing, 1993,140 (2) : 107-113.
  • 5Fox D. KLD-sampling: adaptive particle filters, advances in neural information processing systems 14(NIPS) [J]. Interna- tional Journal of Robotics Research, 2003,22(12) : 985-1003.
  • 6Fox D. Adapting the sample size in particle filters through KLD-sampling[ D]. Washington: USA University of Wash- ington, 2003.
  • 7裴福俊,孙新蕊,崔平远.基于KLD采样的自适应UPF非线性状态估计方法[J].系统仿真学报,2009,21(9):2679-2681. 被引量:2
  • 8邓晓波,皮亦鸣,曹正林.闪烁噪声环境下的机载雷达对海跟踪研究[J].现代雷达,2008,30(2):29-32. 被引量:2

二级参考文献27

  • 1BartonDK.雷达系统分析[M].北京:国防工业出版社,1985..
  • 2Delano R H.A theory of target glint or angular scintillation in radar tracking[C].Proc IRE,1953,41:1 778-1 784
  • 3Hewer G A.Robust preprocessing for Kalman filtering of glint noise[J].IEEE Trans.AES.,1987,23(1):120-128
  • 4Gwen T.Accounting for glint in target tracking[J].SPIE,1998,3373:144-155
  • 5Wu W R.Target tracking with glint noise[J].IEEE Trans,AES,1993,29(1):174-185
  • 6Daeipour E,Bar-Shalom Y.An interacting multiple model approach for target tracking with glint noise[C].Proc.IEEE national radar conference,Atlanta,1994:150-154
  • 7Gordon N J.Novel approach to nonlinear/non-gaussian bayesian state estimation[J].IEE Proceedings-F,1993,140(2):107-113
  • 8Branko,Sanjeev A,Neil G.Beyond the kalman filter:particle filters for tracking applications[M].Boston,MA:Artech House,2004
  • 9Gordon N.A bayesian approach to target tracking in the presence of glint[J].SPIE,1995:472-483
  • 10A Doucet, S J Godsill, C Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing (S0960-3174), 2000, 10(1): 197-208.

共引文献10

同被引文献18

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部