摘要
针对变压器噪声危害严重的问题,对变压器噪声来源和特性进行分析和研究,并研究采用自适应主动降噪方法进行变压器降噪;重点研究并对比了基于最小均方误差(LMS)算法和基于归一化最小均方误差算法(NLMS)的自适应主动降噪方法,最后对这两种方法进行变压器降噪仿真;仿真结果说明采用基于LMS和NLMS的自适应主动降噪方法都能对变压器噪声降噪取得较理想的效果,算法收敛以后噪声去除比可以达到80%以上,其中NLMS的收敛特性更优于LMS;所做工作为下一步的变压器噪声分析和降噪打下良好的基础。
Transformer noise is seriously harmful to human. In this paper, the characteristics of transformer noise are analyzed and studied. And the method of adaptive active noise control is adopted for noise reduction. Specially, Least mean square (LMS) and Normalized Least mean square (NLMS) algorithm are exploited and compared. Simulation results show that adaptive active noise control technique based on these two methods can obtain desirable outcomes, and the convergence of NLMS algorithm is better than LMS. Our work laid a good foundation for the subsequent research.
出处
《计算机测量与控制》
北大核心
2014年第3期875-878,共4页
Computer Measurement &Control
基金
国家自然科学基金(61271330)
重庆市电力公司科技项目基金(12H0748)
关键词
变压器
自适应主动降噪
LMS
NLMS
transformers adaptive active noise control
least mean square
normalized least mean square