期刊文献+

开关电路中的潜在问题进化Petri网分析方法 被引量:2

Evolutionary Petri nets for Sneak Circuit Analysis of Switch Circuits
下载PDF
导出
摘要 利用神经网络进行潜在通路分析(SCA)由于丢失了系统的结构信息,所以导致分析结果不可靠以及解释困难等问题;为了克服这个缺陷,将学习型Petri网(LPN)用于SCA;但是传统LPN有两个缺陷:(1)都是针对无回路PN模型,这不符合实际情况;(2)大部分都是利用BP算法进行学习,带来BP算法固有的缺陷;针对这两个缺陷,提出基于克隆选择算法(CSA)的LPN(CSALPN);首先对系统进行PN建模,然后利用CSA训练PN,使得PN既可以学习先验知识又可以利用系统的结构信息;为了提高LPN的泛化能力,引入了神经网络集成;具体方法就是将训练的所有抗体作为集成中的个体,然后通过简单加权集成输出;文章还提出了带回路的学习型PN不陷入死锁的充要条件;最后用CSALPN对一个典型的电路进行SCA;统计结果证实了该方法可以有效发现开关电路的潜在通路。 Sneak circuit analysis based on neural network may generate suspect result due to losing of architectural information of sys- tem. To overcome the shortcomings, the paper propose a novel approach for SCA, which introduce learning Petri Nets (LPNs) into SCA. But there are two shortcomings of conventional LPNs: 1. all of the LPNs was deigned for non--loop PNs, this was not suitable for reality. 2. Most of the LPNs use BP algorithm to adjust parameters of PNs, this can trap into local minimum and intolerant learning speed. The pa- per introduce clonal selection algorithm (CSA) into LPNs (CSALPNs). CSA can train LPNs with loop and non--loop. The parameters of PNs were adjusted by CSA. Neural network ensemble was introduced to improve the generalization performance, the ensemble consist of the trained antibodies as individuals to predict possible functions. The sufficient and necessary condition of loop PNs for avoiding trapping in deadlock was proposed. A typical example was used to test CSALPNs. The statistical results demonstrate CSALPNs can discover effectively sneak circuits of switch circuits.
出处 《计算机测量与控制》 北大核心 2014年第3期915-918,共4页 Computer Measurement &Control
关键词 潜在通路分析 克隆选择算法 PETRI网 神经网络集成 sneak circuit analysis clonal selection algorithm Petri nets neural network ensemble
  • 相关文献

参考文献9

  • 1Frank Ellis Walkers. Sneak Circuit Analysis Automation [A]. 1989 Proceedings Annual Reliability and Maintainability Symposi- um [C], 1989: 356-362.
  • 2李学锋,钱玲.航天控制系统潜在分析技术应用研究[J].航天控制,2000,18(1):26-30. 被引量:14
  • 3Bachisio Dore. New Development on Automation of Sneak Analysis [S], 1994 Proceedings Annual Reliability and Maintainability Sym- posium[C], 1994: 222-227.
  • 4Wu X Q. A Hybrid Approach in Intelligent Workflow Modelling U- sing Petri Nets and Neural Network for Inter Organizational Co- operation [A]. The 8th International Conference On Computer Supported Cooperative Work in Design Proceedings [C], 2003: 3O7 - 311.
  • 5Alexandre Abellard. Mohamed Moncef, Moez Bouchouicha. A Petri Net Modeling of an Adaptive Learning Control Applied to an Elec- tric Wheelchair [A], Proceedings 2005 IEEE International Sympo- sium on Computational Intelligence in Robotics and Automation [C], 2005, 397-402.
  • 6Kotaro Hirasawa, Masanao Ohbayashi, Singo Sakai, and Jinglu Hu. Learning Petri Network and Its Application to Nonlinear Sys- tem Control [J]. IEEE Transactions on systems, Man, and Cy- bernetics-Part B.. Cybernetics, 1998, 28 (6) .. 71 - 789.
  • 7谭冠政,肖如健.基于Petri网的工作流时间动态预测及验证[J].计算机测量与控制,2007,15(12):1801-1803. 被引量:6
  • 8宗群,马宏波,王中海.基于NNFPN模型的电梯故障诊断方法的研究[J].控制与决策,2005,20(3):341-344. 被引量:18
  • 9Esat I I, Kothari B, Shaikh A. Encoding neural networks for GA based structural construction [A]. Proceedings of the 6th Interna- tional conference on Neural information processing [C], 1999, 1: 359 -365.

二级参考文献17

  • 1任国珍,巩垒,王海洋,黄富洁.工作流中时序约束正确性验证[J].计算机工程,2004,30(11):60-62. 被引量:2
  • 2佟知泽.电梯常见故障及排除方法[J].建筑电气,1993,12(4):41-43. 被引量:1
  • 3Tsuji K, Matsumoto T. Extended Petri net models for neural networks and fuzzy inference engines-their net structural properties[A].IEEE Int Symp on Circuits and Systems[C]. New Orleans, 1990,4: 2670-2673.
  • 4Kadjinicolaou M G, Abdelrazik M B E, Musgrave G. Structured analysis for neural networks using Petri nets[A]. Proc of the 33rd Midwest Symp on Circuits and Systems[C]. Calgary, 1990, 2: 770-773.
  • 5Ahson S I. Petri net models of fuzzy neural networks[J]. Systems, Man and Cybernetics, 1995, 25(6): 926-932.
  • 6Hanna M M, Buck A, Smith R. Fuzzy Petri nets with neural networks to model products quality from a CNC-milling machining center[J]. Systems, Man and Cybernetics - Part A, 1996, 26(5): 638-645.
  • 7Tsang E C C, Yeung D S, Lee J W T. Learning capability in fuzzy Petri nets[A]. IEEE SMC'99 Conf Proc[C]. Tokyo, 1999, 3: 355-360.
  • 8Li X O, Yu W, Lara Rosano F. Dynamic knowledge inference and learning under adaptive fuzzy Petri net framework[J]. Systems, Man and Cybernetics - Part C, 2000, 30(4): 442 -450.
  • 9Tracy D P, Jones I R.Synthesis of intelligent switching systems using neural Petri nets[A]. IEEE Int Conf on Systems, Man and Cybernetics[C]. Washington, 2003, 2: 1298 -1303.
  • 10Marjanovic O. Dynamic verification of temporal constraints in production workflows [A]. Proceedings of the 11th Australian Database Conference [C]. 2000. 74-81.

共引文献34

同被引文献19

  • 1吴时霖,白雪峰.Internet上Petri网分析工具综述[J].计算机科学,1996,23(4):27-30. 被引量:2
  • 2S. M. Han, M. M. Hassan, C. W. Yoon, andE. --N. Huh. Efficient service recommendation system for cloud computing market [C]. Proceedings of the 2nd International Conference on Interaction Sciences Information Technology, Culture and Human-- ICIS 09, pp. 839-845, 2009.
  • 3Lizhe Wang, Rajiv Ranjan, Jinjun Chen. Cloud Computing Meth- odology, System and Applicatios IMp. CRC Press, 2011, pp 110- 129.
  • 4Lindeman C. , DSPNexpress: a so{tware package for the efficient solution of deterministic and stochastic Petri nets I-J]. Performance evaluation, 1995, 22: 3-21.
  • 5Henryk A. , http: //www. winpesim, de/index, html, 2014--01 --10.
  • 6[M Thurner. TOMSPN: A tool for modeling with SPN [J]. IEEE, 1995, 95= 1063-1070.
  • 7S. Kounev and A. Buchmann, "SimQPN -- A tool and methodolo- gy for analyzing queueing Petri net models by means of simula- tion," Performance Evaluation, vol. 63, no. 4- 5: 364 - 394, 2006.
  • 8S. Spinner, S. Kounev, and P. Meier, Stochastic Modeling and Analysis using QPME: Queueing Petri Net Modeling Environment v2.0, in Proceedings of the 33rd International Conference on Ap- plication and Theory of Petri Nets and Concurrency, 2012, 73 (47): 388-397.
  • 9郧建平,王生怀,谢铁邦.白光干涉仪中光源参数的优化选择[J].仪器仪表学报,2009,30(2):410-415. 被引量:4
  • 10王维波,陈德应,樊荣伟,夏元钦.光源稳定性对简并四波混频信噪比影响的实验研究[J].光谱学与光谱分析,2010,30(2):462-465. 被引量:5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部