期刊文献+

一种积累型槽栅超势垒二极管

An Accumulated Trench-gate Super Barrier Diode
下载PDF
导出
摘要 提出了一种积累型槽栅超势垒二极管,该二极管采用N型积累型MOSFET,通过MOSFET的体效应作用降低二极管势垒。当外加很小的正向电压时,在N+区下方以及栅氧化层和N-区界面处形成电子积累的薄层,形成电子电流,进一步降低二极管正向压降;随着外加电压增大,P+区、N-外延区和N+衬底构成的PIN二极管开启,提供大电流。反向阻断时,MOSFET截止,PN结快速耗尽,利用反偏PN结来承担反向耐压。N型积累型MOSFET沟道长度由N+区和N外延区间的N-区长度决定。仿真结果表明,在相同外延层厚度和浓度下,该结构器件的开启电压约为0.23 V,远低于普通PIN二极管的开启电压,较肖特基二极管的开启电压降低约30%,泄漏电流比肖特基二极管小近50倍。 An accumulated trench gate super barrier diode has been proposed in the paper. It has a Ntype accumulation MOSFET, which reduces the barrier through MOSFET body effect. With tiny positive voltage applied, an accumulate electronic thin layer is produced under N+heavy doped region as well as at the interface between gate oxide and Ntype light doped region, electron current can be produced to reduce the forward voltage of the diode. With the increase of applied voltage, the PIN diode which consist of P+doped region, N-epitaxial layer and N+substrate, is opened, and the PIN affords large current. When a reverse voltage is applied, the MOSFET is cut off and PN junction is depleted rapidly, so the PN junction undertakes the voltage drop and the leakage current is reduced. The channel length of Ntype accumulates MOSFET due to the length between N+doped region and Ntype lightly doped region. The simulation results show, with the same thickness and concentration of epitaxial region, the onset voltage of the device is about 0. 23V, far lower than conventional PIN diode. Compared with Schottky diode, the onset voltage is reduced by 30%, and the leakage current is 50 times smaller than that of Schottky diode.
出处 《电子与封装》 2014年第3期33-36,共4页 Electronics & Packaging
关键词 超势垒二极管 槽栅 开启电压 泄漏电流 super barrier diode trench gate onset voltage leakage current
  • 相关文献

参考文献11

  • 1Jubadi W M, Noor S N M. Simulations of variable I-layer thickness effects on sillcon PIN diode I-V characteristics [M]. Industrial Electronics & Applications, 2010. 428-432.
  • 2XingBi Chen. Optimization of the specific On-Resistance of the COOLMOS [J]. IEEE Transactions on Electron Device, 2001,48 (2) .
  • 3Chang H R, Gupta R N. Comparison of 1 200 V silicon carbide Schottky diodes and sillicon power diodes [J]. IECEC, 2000, l: 174-179.
  • 4H P Yee, P O Lauritzen, S S Yee. Channel diode, a new power diode [C]. Proc. ISPSD, 1992.72-79.
  • 5S M Sze. Physics of Semiconductor Device [M]. New York: Wiley. 1983.
  • 6Q Huang, G A J Amaratunga. MOS contronlled diode, a new power diode [J]. Solid State Electron, 1995, 38: 977-980.
  • 7Muck, M Becker. Use of super Schottky diodes in a cryogenic radio frequency superconduting quantum interference device readout [Z]. Digital Object Identifier, 1995.376-378.
  • 8Gokirmak All, Tiwari, Sandip. Accumulated body ultranarrow channel sillicon transistor with extreme threshold voltage tenability [J]. Applied Physics Letters, 2007,24 (91).
  • 9Vladimir Rodov, Alexei L. Ankoudinov, Taufik. Super barrier Rectifier, a new generation of power diode [J]. IEEE Transactions on Industry Applications, 2008, 44 ( 1 ) .
  • 10Baishya S, Abhijit Mallik, Sarkar C K. A threshold voltage modiel for DMG-MOS transistors taking into account the varying depth of channel depletion layers around the source and drain [J]. Industrial and Information Systems, 2007.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部