期刊文献+

赤桉α-微管蛋白家族基因的克隆与生物信息学分析 被引量:1

Cloning and Bioinformatics Analysis of α-tubulin Family Genes from Eucalyptus camaldulensis
下载PDF
导出
摘要 微管蛋白是真核生物中普遍存在的结构蛋白,在细胞的形态维持、分裂、迁移以及信号转导等方面发挥着重要的作用,同时也是荧光定量PCR技术中常见的一种内参基因。为深入了解α-微管蛋白(α-tubulin)对桉树生长发育的调节,本研究根据α-Tubulin基因的保守区段设计简并引物,从赤桉嫩叶中获得了3条tubulin基因的片段,并利用RACE技术得到了这些基因的全长cDNA,将其命名为EC-TUB1、EC-TUB2和EC-TUB3基因。此外,通过网上资源和生物信息学软件对这3条基因进行分析,发现这些基因编码的蛋白具有α-Tubulin蛋白特有的保守序列和活性结构域的相关特征,同时与其他植物的α-Tubulin蛋白具有较高的相似性,这为了解α-tubulin在桉树生长发育过程中的表达特性以及α-tubulin蛋白的功能,进一步揭示和利用桉树生长发育机理和树种间的差异性奠定了理论基础。 Tubulin is a typical structural protein in eukaryote organism, which plays an important role involved in structure maintenance, division, migration and signal transduction for cells. Also it is a common reference gene ofteru used in the real-time quantitative PCR technology. In order to reveal the biological function of α-tubulin in the growth and development of Eucalyptus, three genes were obtained and named as EC-TUB1, EC-TUB2 and EC-TUB3 by amplification with primers for TUB genes conserved regions and RACE method from the young leaf of Eucalyptus camaldulensis in this research. Bioinformatics analysis suggested that the proteins encoded by the corresponding genes owned the typical conserved domains and active domains of TUB and showed high homology with those of other plant species. So these results provide a theoretical basis for understanding the characteristics of α-tubulin expression and function in the process of growth and development of Eucalyptus, and further reveal the mechanism and utilization of Eucalyptus growth differences between tree species.
出处 《热带作物学报》 CSCD 北大核心 2014年第3期534-541,共8页 Chinese Journal of Tropical Crops
基金 湛江市科技计划项目(桉叶油优质高产转基因桉树新品种的培育) 林业重大公益性行业专项(No.201104003)
关键词 赤桉 Α-TUBULIN 家族基因 克隆 生物信息学分析 Eucalyptus camaldulensis α-Tubulin Family genes Cloning Bioinformatics analysis
  • 相关文献

参考文献26

二级参考文献97

共引文献130

同被引文献26

  • 1时兰春,王益川,王伯初.植物细胞骨架与细胞生长[J].植物生理学通讯,2007,43(6):1175-1181. 被引量:9
  • 2Celton J-M, Chagné D, Tustin S D, Terakami S, Nishitani C, Yamamoto T, Gardiner S E. 2009. Update on comparative genome mapping between Malus and Pyrus. BMC Res Notes, 2: 182.
  • 3Chagné D, Crowhurst R N, Pindo M, ThrimawithanaA, Deng C, Ireland H, Fiers M, Dzierzon H, CestaroA, FontanaP, Bianco L, LuA, Storey R, Knaibel M, Saeed M, Montanari S, Kim Y K, Nicolini D, Larger S, Stefani E, Allan A C, Bowen J, Harvey I, Johnston J, MalnoyM, TroggioM, PerchepiedL, Sawyer G, WiedowC, Won K, Viola R, Hellens R P, Brewer L, Bus VG, SchafferRJ, Gardiner S E, Velasco R. 2014. The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett' ) . PLoS ONE, 9 (4): e92644.
  • 4Chen B, Wang C, Tian Y, Chu Q, Hu C. 2015. Anatomical characteristics of young stems and mature leaves of dwarf pear. Scientia Horticulturae, 186: 172- 179.
  • 5Elkins R, Bell R, Einhom T. 2012. Needs assessment for future US pear rootstock research directions based on the current state of pear production and rootstock research. Joumal of the American Pomological Society, 66:153 - 163.
  • 6Fan L, Zhang M Y, Liu Q Z, Li L T, Song Y, Wang L F, Zhang S L, Wu J. 2013. Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Mol Biol Rep, 31 : 1271 - 1282.
  • 7Fideghelli C, Sartori A, Grassi F. 2003. Fruit tree size and architecture. Acta Horticulturae, 662:279 - 293.
  • 8Hajagos A, Végvári G. 2013. Investigation of tissue structure and xylem anatomy of eight rootstocks of sweet cherry (Prunus avium L.). Trees, 27: 53 - 60.
  • 9Han I S, Jongewaard I, Fosket D E. 1991. Limited expression of a diverged β-tubulin gene during soybean ( Glycine max [L.] Merr.) development. Plant Molecular Biology, 16: 225 - 234.
  • 10He X C, Qin Y M, Xu Y, Hu C Y, Zhu Y X. 2008. Molecular cloning, expression profiling, and yeast complementation of 19 β-tubulin cDNAs from developing cotton ovules. Journal of Experimental Botany, 59 (10): 2687 - 2695.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部