期刊文献+

谐振子的辛欧拉分析方法 被引量:1

SYMPLECTIC EULER METHOD FOR HARMONIC OSCILLATOR
下载PDF
导出
摘要 针对理想简谐振子力学模型,研究了其守恒律,并利用辛欧拉格式分析简谐振子振动过程.首先给出了谐振子系统的平方守恒律、周期守恒律和相差守恒律.构造了谐振子的普通欧拉格式和辛欧拉格式,研究了两种格式下三种守恒律各自的保持情况.模拟结果显示:辛欧拉格式能够精确保持时域守恒律(平方守恒律),但无法保持频域守恒律(周期守恒律和相差守恒律).如要克服辛欧拉格式的不足,需按邢誉峰教授提出的方法进行校正. Focusing on the conservation properties, the symplectic Euler scheme of the harmonic oscillator was constructed to analyze its vibration properties. Firstly, three conservation laws, including the square conservation law, the period conservation law and the phase difference conservation law, were presented for the harmonic oscillator. And then, the common Euler scheme and the symplectic Euler scheme were constructed to study the above three conservation laws. The numerical results imply that the symplectic Euler scheme can preserve the conservation law in time domain (the square conservation law) exactly, but can't preserve the conservation laws in phase domain (the period conservation law and the phase difference conservation law) , which is the shortcoming of the symplectic method but can be overcome by the modification method presented by Prof. Xing.
出处 《动力学与控制学报》 2014年第1期9-12,共4页 Journal of Dynamics and Control
基金 国家自然科学基金(11172239 11002115 11372253) 博士点基金(20126102110023) 大连理工大学工业装备结构分析国家重点实验室开放基金(GZ0802)~~
关键词 哈密尔顿 保结构算法 辛欧拉 简谐振子 守恒律 Hamiltonians, structure - preserving method, symplectic Euler, harmonic oscillator, conservation law
  • 相关文献

参考文献13

  • 1Feng K. On difference schemes and symplectic geometry, Proceeding of the 1984 Beijing symposium on D. D. , Bei- jing: Science Press, 1984, 42 - 58.
  • 2Zhong W X. Some developments of computational solid Me- chanics in China. Computers & Structures, 1988, 30(4) : 783 - 788.
  • 3Qin M Z, Zhang M Q. Multi-stage sympleetie schemes of two kinds of Hamiltonian systems for wave equations. Com- puters & Mathematics with Applications, 1990, 19 ( 10 ) : 51 - 62.
  • 4Zhao P F, Qin M Z. Multisympleetic geometry and multi- sympleetie Preissmann scheme for the KdV equation. Jour- nal of Physics a- Mathematical and General, 2000, 33 ( 18 ) : 3613 - 3626.
  • 5Hairer E, Lubieh C, Wanner G. Geometric numerical inte- gration: structure preserving algorithms for Ordinary Differ- ential Equations. Berlin: Springer-Verlag, 2002.
  • 6Budd C J, Piggott M D, Geometrie integration and its ap- plications. Amsterdam: Handbook of Numerieal Analysis, 2003 : 35 - 139.
  • 7Bridges T J. Multi-symplectic structures and wave propaga- tion. Mathematical proceedings of the Cambridge Philosoph- ical Society, 1997, 121(1) :147 - 190.
  • 8Hu W P, Deng Z C, Han S M, Zhang W R. Generalized multi-symplectic integrators for a class of Hamiltonian non- linear wave PDEs. Journal of Computational Physics, 2013, 235:394 -406.
  • 9胡伟鹏,邓子辰.大阻尼杆振动的广义多辛算法[J].动力学与控制学报,2013,11(1):1-4. 被引量:4
  • 10Hu W P, Deng Z C, Wang B, Ouyang H J. Chaos in an embedded single - walled carbon nanotube. Nonlinear Dy- namics, 2013,72 ( 1 - 2) : 389 - 398.

二级参考文献11

共引文献26

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部