期刊文献+

线性边界条件热传导方程求解 被引量:4

On the Solving of Heat Conduction Equation of Linear Boundary Conditions
下载PDF
导出
摘要 热传导方程是工程中很重要的偏微分方程,工程上利用它描述某个区域内的温度如何随时间变化,这种方程常被称作扩散方程。研究热传导方程的解具有很重要的意义。本文主要介绍解一维线性初边值热方程的分离变量法及其pdepe数值解法。结合实例讲述了如何用pdepe函数编程求解热传导方程。 The heat conduction equation is an important partial differential equation in engineering, in which it is used to de-scribe how the temperature changes with time within a certain area, and such an equation is often called diffusion equation. It is of great significance to research the solving of the heat conduction equation. This paper mainly introduced the method of separation of variables for the solving of one-dimensional linear initial boundary value heat equation and the method of solving its pdepe numerical value. Combined with practical cases, this paper elab-orated how to use pdepe functional programming to solve heat e-quation.
作者 贾海峰 刘蕤
出处 《科教文汇》 2014年第9期47-50,共4页 Journal of Science and Education
关键词 热传导方程 线性边 heat conduction equation linear boundary
  • 相关文献

参考文献7

  • 1贾海峰.一维热传导方程爆破解的数值模拟[J].长春师范学院学报(自然科学版),2013,32(5):8-12. 被引量:1
  • 2Polking,John.Albert,Bogges.Dave,Arnold.Differential Equations.Pren- ticeHall,2002.
  • 3Arnold,David.His matlab and LATEX expertise.
  • 4Cooper,Jeffery.Introduction to Partial Differential Equations with MATLAB.Birkhauser, 1998.
  • 5The Sauceman.His LATEX expertise.
  • 6Walter A. Strauss.Partial Differential Equations:An Introduction. John Wiley & Sons,1992.
  • 7H.A.Levine,L.E.Payne.Nonexistence theorems for the heat equ- ation with nonlinear boundary conditions and for the porous me- dium equation backward in time[J].J. Differential Equations,1974 (16):319-334.

二级参考文献14

  • 1H.A.Levine,L.E,Payne.Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porousmedium equation backward in time[J].J.Differential Equations,1974(16):319-334.
  • 2H.A.Levine,R.A,Smith.A potential well theory for the heat equation with a nonlinear boundary condition[J].Math.Meth-ods Appl.Sci.1987(9):127-136.
  • 3W.Walter.On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundarycondition[J].Siam J.Math.Anal.,1975(6):85-90.
  • 4B.Hu,H.M.Yin.The profile near blowup time for solution of the heat equation with a nonlinear boundary condition[J].Transation.Amer.Math.Society,1994,346(1).
  • 5M.Fila,P.Quittner.The blowup rate for the heat equation with a nonlinear boundary condition[J].Math.Methods Appl.Sci.1991(14):197-205.
  • 6M.Fila,J.S.Guo.Complete blowup and incomplete quenching for the heat equation with a nonlinear boundary condition[J].Nolinear Analysis,2002(48):995-1002.
  • 7A,Friedman,B.McLeod.Blowup of positive solutions of semilinear heat equations[J].Indiana Univ.Math.J.1985(34):425-477.
  • 8Y.Giga,R.V.Kohn.Asymptotic self-similar blowup of semilinear heat equations [J].Comm.Pure Appl.Math.1985(38):297-319.
  • 9Characterizing blowup using similarity variables [J].Indiana Univ.Math.J.1987(36):425-447.
  • 10Nondegeneracy of blowup for semilinear heat equations[J].Comm.Pure Appl.Math.,1989(42):845-884.

同被引文献19

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部