期刊文献+

复杂场景下基于自适应多特征融合的跟踪算法 被引量:3

Tracking Algorithm Based on Adaptive Multi-features Fusion under Complex Scenarios
下载PDF
导出
摘要 在复杂的场景下,单特征对目标描述不够充分,很难稳健地跟踪目标,针对这个问题,提出了一个基于自适应多特征融合的粒子滤波跟踪算法。该算法采用灰度和边缘特征表示目标,从目标观测似然模型构建的角度融合两种特征,利用粒子似然分布的香农熵动态地评价特征的可靠性,进而确定特征融合权重,以提高算法对场景的适应能力;同时,改进了线性加权的模型更新策略,通过对加权系数的在线调整来抑制模型漂移。实验表明,该算法可以实现部分遮挡和背景干扰等复杂场景下的跟踪。 It's difficult to track object stably because of the shortcomings of single feature under complex scenarios. Aming at this problem, an particle filter tracking algorithm based on adaptive multi-features fusion is proposed. Target is represented by the gray and edge, this two features are fused from the perspective of target observation likelihood model construction, The proposed algorithm dynamically assesses feature's reliability by the Shannon entropy of particles' likelihood distribution, then determines the feature's fusion weight with respect to it's discriminability. Simultaneously, we improve the linear weighted model update strategy by adjusting the weighting coefficient on line ,which suppresses model drift. Experiments show this al- gorithm can achieve tracking under complex scenarios such as partial occlusion and background interference.
出处 《指挥控制与仿真》 2014年第2期33-38,共6页 Command Control & Simulation
关键词 视频跟踪 多特征 粒子滤波 自适应 模型更新 video tracking muhi-features particle filter adaptive fuse model update
分类号 E917 [军事]
  • 相关文献

参考文献12

  • 1Numnliaro K, Koller-Meier E, Van GOOL L.An Adaptive Color-based Particle Filter[ J ]. Image and Vision Compu- ting,2003, 21(1): 99-110.
  • 2蔺海峰,马宇峰,宋涛.基于SIFT特征目标跟踪算法研究[J].自动化学报,2010,36(8):1204-1208. 被引量:71
  • 3Birchfield, S. Elliptical Head Tracking Usinglntensity Gradients and Color Histograms [ C ] //Computer Vision and Pattern Recognition, Santa Barbara, 1998: 232-237.
  • 4Hanzi Wang, Suter D. Efficient Visual Tracking by Proba- bilistic Fusion of Mutiple Cues[C] //International Confer- ence on Pattern Reconigtion, Hong Kong, China, 2006: 892-895.
  • 5David Serby, Esther-Koller-Meier, Luc Van Gool. Proba- bilistie Object Tracking Using Multiple Features[C]//In-temational Conferenceon Pattern Reconigtion, Switzerland, 2004: 184-187.
  • 6C. Shen, A. Van den Hengel, A. Dick. Probabilistic Mul- tiple Cue Integration for Particle Filter Based Tracking [ C]//International Conference on Digital Image Compu- ting: Techniques and Applications, Sydney, 2003 : 399-408.
  • 7Collins, R.T, Yanxi Liu, Yanxi Liu, Leordeanu, M. On- line Selection of Discriminative Tracking Features [ J ]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2005, 27(10): 1631-1643.
  • 8J. Wang, X. Chen, W. Gao. Online Selecting Discrimina- tive Tracking Features Using Particle Filter [ C ] //2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005: 1037-1042.
  • 9Maggio, E, Smerladi, F, Cavallaro, A. Adaptive Mul- tifeature Tracking in a Particle Fihering Framework [ J ]. IEEE Transaction on Circuit and Systems for Video Tech- nology, 2007, 17(10): 1348-1359.
  • 10Sidenbladh H, Black M J, Fleet D J. Stochastic Tracking of 3D Human Figures Using 2D Image Motion[ C]//Euro- pean Conference on Computer Vision, Dublin, Ireland, 2000: 702-718.

二级参考文献8

  • 1Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 229-240.
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
  • 3Feng Z R, Lu N, Jiang P. Posterior probability mea sure for image matching. Pattern Recognition, 2008, 41(7): 2422-2433.
  • 4Hu W M, Tan T N, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(3): 334-352.
  • 5Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, 2009, 113(3): 345-352.
  • 6Suga A, Fukuda K, Takiguchi T, Ariki Y. Object recognition and segmentation using SIFT and graph cuts. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4.
  • 7Lowe D G. Distinctive image features from scale invariant key points. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 8Lowe D G. Object recognition from local scale invariant features. In: Proceedings of the 7th International Conference on Computer Vision. Corfu, Greece: IEEE, 1999. 1150-1157.

共引文献70

同被引文献26

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部