期刊文献+

基于中值滤波和ICA的军事目标特征提取方法 被引量:1

Method of Extracting Military Target Feature Based on Median Filtering and ICA
下载PDF
导出
摘要 针对电子侦察中存在的干扰或多特征重叠问题,提出一种基于中值滤波和独立分量分析(ICA)的军事目标特征提取方法。首先借助中值滤波对含噪声侦察图像进行去噪处理,然后利用无预白化的快速不动点(FastICA)算法对去噪后的侦察图像做目标特征的提取,最后再次通过中值滤波对提取的目标特征图像进行残留噪声的去除。仿真实验结果表明,该方法对噪声的去除效果较好,满足了人们的视觉需求;同时,提取的目标特征图像能够自主地分辨出不同的目标特征,去除掉重叠的目标特征。该方法具有较强的实用性和有效性。 For the problem of interference and multi-feature overlap in the electron reconnais- sance, a feature extraction method of military target is proposed based on median filtering and In- dependent Component Analysis (ICA). Firstly ,the denoising to noisy reconnoitered images is fin- ished by median filtering. And then the target feature extraction to denoised reconnoitered images is done by Fast Fixed Point (FastICA) algorithm without pre-whitening. Finally,for further remo- ving the residual noise in extracted target feature images, median filtering is used again. Simula- tion results show that this method is effective in denoising, which perform better in vision. Mean- while, the extracted target feature images can autonomous distinguish the different target features and delete the overlapped target features. Therefore ,this method is practicable and effective.
出处 《电子信息对抗技术》 2014年第2期22-25,共4页 Electronic Information Warfare Technology
关键词 电子侦察 中值滤波 独立分量分析 特征提取 electronic reconnaissance median filtering independent component analysis fea-ture extraction
  • 相关文献

参考文献1

二级参考文献8

  • 1Cardoso J F. Blind signal separation: statistical principles. Proc.IEEE, 1998, 86(10): 2009-2025.
  • 2Brown G J, Cooke M. Computational auditory scene analysis.Computer Speech and Language, 1994, 8(4): 297-336.
  • 3Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis. New York: John Wiley & Sons, Inc, 2001: 147- 161,293-304.
  • 4van der Kouwe A J W, Wang D L, Brown G J. A comparison of auditory and blind separation techniques for speech segregation.IEEE Trans. on Speech and Audio Proceeding, 2001, 9(3):189-195.
  • 5Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. 1EEE Trans. on Neural Networks,1999, 10(3): 626-634.
  • 6刘琚,何振亚.盲源分离和盲反卷积[J].电子学报,2002,30(4):570-576. 被引量:63
  • 7陈雪勤,赵鹤鸣,陈小平.基于计算听觉场景分析的强噪声背景下基音检测方法[J].电路与系统学报,2003,8(3):128-131. 被引量:5
  • 8赵鹤鸣,朱祺,陈雪勤,俞一彪.临界频带子波变换用于混叠语音分离的研究[J].声学学报,2004,29(2):177-181. 被引量:7

共引文献13

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部