期刊文献+

Multi-variable Optimization of HVAC System Using a Genetic Algorithm 被引量:1

Multi-variable Optimization of HVAC System Using a Genetic Algorithm
下载PDF
导出
摘要 Geothermal is a fast-growing alternative heat source for HVAC systems, however, the initial cost of using a ground source HVAC system is higher compared to an air source system. Studies about system design and operation are necessary to reduce the initial cost and ensure that the ground source heat pump system has high efficiency, resulting in a lower total life-time cost. In this study, a multi-variable evolutionary computation algorithm is proposed for generating optimal parameters for a geothermal source HVAC system. The system was modeled and simulated using MATLAB. The design parameters were calculated by minimizing the energy consumption, Based on an experimental building, a case study was presented. Using this model, the optimal set points were calculated and used as a designed system. Energy consumption of this system was reduced by about 10% compared to the system operated with a fixed supply cold water temperature (7 ℃).
出处 《Journal of Energy and Power Engineering》 2014年第2期306-312,共7页 能源与动力工程(美国大卫英文)
关键词 Ground source air-conditioning system genetic algorithm OPTIMIZATION MATLAB. 暖通空调系统 变量优化 遗传算法 MATLAB仿真 地源热泵系统 时间成本 计算算法 HVAC系统
  • 相关文献

参考文献14

  • 1Japan Meteorological Agency Home Page, http://www.jma.go.jp/jma/en/Activities/observations.html (accessed July 27, 2012).
  • 2J.W. Lund, D.H. Freeston, T.L. Boyd, Direct utilization of geothermal energy 2010 worldwide review, in: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 2010.
  • 3Y. Nam, R. Ooka, Heating and cooling experiments and feasibility study using heating and cooling load model for ground water heat pump system, J. Environ. Eng., AIJ 74 (638) 473-479.
  • 4H. Arif, A. Ozay, H. Ebm, Experimental study of a closed loop vertical ground source heat pump system, Energy Conversion & Management 44 (2003) 527-548.
  • 5G.C. Luisa, K.N. Leslie, A design optimization tool based on a genetic algorithm, Automation in Construction 11 (2002) 173-184.
  • 6M. Laurent, H. Fariborz, Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network, Building and Environment 45 (2010) 739-746.
  • 7L. Lu, W. Cai, L. Xie, S. Li, Y.C. Soh, HVAC system optimization-In-building section, Energy and Building 37 (2005) 11-22.
  • 8K. Andrew, T. Fan, X. Guanglin, Multi-objective optimization of HVAC system with an evolutionary computation algorithm, Energy 36 (2011) 2440-2449.
  • 9S. Hoseyn, H.A. Emad, A. Majid, Multi-objective optimization of a vertical ground source heat pump using evolutionary algorithm, Energy Conversion and Management 50 (2009) 2035-2046.
  • 10T. Yashiro, R. Ooka, Zero energy building project in the University of Tokyo, in: 2011 Helsinki World Sustainable Building Conference, Finland, 2011.

同被引文献15

  • 1吴坤,张欢,赵海波.遗传算法在水—水热泵优化研究中的应用[J].暖通空调,2005,35(7):9-13. 被引量:8
  • 2杨卫波,施明恒.基于遗传算法的太阳能地热复合源热泵系统的优化[J].暖通空调,2007,37(2):12-17. 被引量:13
  • 3Roberta Padovan, Marco Manzan. Genetic optimization of a PCMenhanced storage tank for Solar Domestic Hot Water Systems[J]. Solar Energy, 2014, 103:563-573.
  • 4Soteris A, Kalogirou. Optimization of solar systems using artificial neural-networks and genetic algorithms[J]. Applied Energy, 2004, 77:383-405.
  • 5Laurent Magnier, Fariborz Haghighat. Multiobjective optimization of building design using TRNSYS simulations, genetic algorit -hm, and Artificial Neural Network [J] .Building and Environment, 2010, 45:739-746.
  • 6李郁武.直膨式太阳能热泵热水装置的优化分析与变容量运行研究[D].上海:上海交通大学,2013.
  • 7Carsen J Banister, William R Wagar, Michael R Collins. Solarassisted heat pump test apparatus [J]. Energy Procedia,2014, 48: 489-498.
  • 8刘羽岱,潘毅群,黄治钟.基于TRNSYS和MATLAB的某办公建筑联合仿真[J].第十八届全国暖通空调制冷学术年会,2012.
  • 9S.J. Sterling, M.R. Collins. Feasibility analysis of an indirect heat pump assisted solar domestic hot water system [J]. Applied Energy,2011, 93:11-17.
  • 10D Gossard, B Lartigue, F Thellier. Multiobjective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network[J]. Energy and Buildings,2013, 67:253-260.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部