期刊文献+

基于形态分量分析的滚动轴承故障诊断方法 被引量:7

New method for fault diagnosis of rolling bearings based on morphological component analysis
下载PDF
导出
摘要 在改进形态分量分析阈值去噪方法的基础上,提出了基于形态分量分析的滚动轴承故障诊断方法。形态分量分析根据信号中各组成成分的形态差异,构建不同的稀疏表示字典对各组成成分进行分离。当轴承出现局部损伤时,其振动信号往往由以包含轴承自身振动的谐振分量、包含轴承故障信息的冲击分量及随机噪声分量构成。谐振分量表现为信号中的平滑部分,而冲击分量则表现为信号中的细节部分,因此,可根据谐振分量与冲击分量的形态差异,实现二者的分离。该方法利用形态分量分析对滚动轴承故障信号中的谐振分量、冲击分量和噪声分量进行分离,然后根据冲击分量中冲击之间的时间间隔诊断滚动轴承故障。算法仿真和应用实例表明,该方法能有效地提取滚动轴承故障振动信号中的故障冲击成分。 Based on the improvement of the threshold denoising method of morphological component analysis (MCA),a new method for fault diagnosis of rolling bearings based on MCA was proposed.According to the morphological difference of each component,different sparse dictionaries were built with MCA to separate each component from a signal. When a rolling bearing was locally damaged,its vibration signal was often composed of harmonic components with system characteristics of the rolling bearing,impulse components with fault information and random noise. The harmonic components represented the smooth part of the vibration signal,while the impulse components represented the detail part of the vibration signal,therefore,the two kinds of components could be separated according to the morphological difference .The harmonic components,impulse components and random noise component were separated from the vibration signal of a fault rolling bearing by using MCA,and the fault diagnosis of rolling bearing was carried out according to the time interval of impulses in the impulse components.The simulation and application examples proved that the proposed method is effective in extracting the fault impulse components from the vibration signal of a locally damaged rolling bearing.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第5期132-136,181,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(51275161) 湖南省科技计划(2012SK3184)资助
关键词 形态分量分析 阈值去噪 滚动轴承 故障诊断 morphological component analysis threshold denoising rolling bearing fault diagnosis
  • 相关文献

参考文献17

  • 1Antoni J, Randall R B. The spectral kurtosis:application to the vibratory surveillance and diagnostics of rotating machines [ J ]. Mechanical Systems and Signal Processing, 2006,20 (2) :308 -331.
  • 2Lei Y G, Lin J, He Z J, et al. Application of an improved kurtogram method for fault diagnosis of rolling element bearings [ J ]. Mechanical Systems and Signal Processing, 2011,25 (5) : 1738 - 1749.
  • 3黄之初,张家凡.滚动轴承故障脉冲信号提取及诊断∶一种盲解卷积方法[J].振动与冲击,2006,25(3):150-154. 被引量:12
  • 4王诗彬,朱忠奎,王安柱.基于瞬态冲击响应参数辨识的轴承故障特征检测[J].振动工程学报,2010,23(4):445-449. 被引量:16
  • 5Hong H B, Liang M. K-hybrid: a kurtosis-based hybrid thresholding method for mechanical signal denoising [ J ]. Journal of Vibration and Acoustics ,2007,129 (4) :458 - 470.
  • 6Starck J L, Moudden Y, Robin J. Morphological component analysis [ C ]. Proceedings of SPIE ,2005 ,59 ( 14 ) : 1 - 15.
  • 7李映,张艳宁,许星.基于信号稀疏表示的形态成分分析:进展和展望[J].电子学报,2009,37(1):146-152. 被引量:55
  • 8Starck J L, Elad M, Donoho D. Redundant multiscale transforms and their application for morphological component separation[ J]. Advances in Imaging and Electron Physics, 2004,132 (82) :287 - 384.
  • 9Elad M, Starck J L, Querre P. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) [ J ]. Journal on Applied and Computational Harmonic Analysis ACHA,2005,19 (3) : 340 - 358.
  • 10Yong X Y,Ward R K, Birch G E. Generalized morphological component analysis for EEG source separaton and artifact removal [ C ]. Proceeedings of the 4th International IEEE EMBS Conference on Neural Engineering Antalya, Turkey, 2009,343 - 347.

二级参考文献83

  • 1焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 2A Hyvarinen, J Karhunen, E Oja. Independent component analysis[M]. New York: Wiley, 2001.
  • 3A Belouchrani,K A Merairn, J-F Cardoso, E Moulines. A blind source separation technique based on second order statistics[ J]. reEF, transactions on Signal Processing, 1997, 45 (2) : 434 - 444.
  • 4B A Pearlrnutter, V K Potluru. Sparse separation:Principles and tricks[ A]. Proceedings of International Society for Optical Engineering(SPIE) [ C]. Orlando, FL, USA,2003,5102:1 - 4.
  • 5P G Georgiev,F Theis,A Cichocki. Sparse component analysis and blind source separation of underdetermined mixtures [ J]. IEEE Transactions on Neural Network, 2005, 16 ( 4 ) : 992 - 996.
  • 6M Zibulevsky, B A Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary [J ]. Neural Computation,2001,13(4) : 863 - 882.
  • 7J L Starck, M Elad, D Donoho. Redundant multiscale transforms and their application for morphological component analysis[J]. Advances in Imaging and Electron Physics, 2004, 132 (82) : 287 - 348.
  • 8J L Starck, M Elad, D Donoho. Image decomposition via the combination of sparse representation and a variational approach [J]. IEEE Transactions on Image Processing, 2005, 14( 10): 1570- 1582.
  • 9E J Candes. Ridgelts: theory and applications[ D ]. USA: Department of Statistics, Stanford University, 1998.
  • 10E J CandY, D L Donoho. Curvelets-A Surprisingly Effective Nonadaptive Representation for Objects with Edges[ M]. Curve and Surface Fitting, Vanderbilt University Press, 1999.

共引文献93

同被引文献49

  • 1梅宏斌.滚动轴承振动监测与诊断理论方法系统[M].北京:机械工业出版社.1996.
  • 2康海英,栾军英,郑海起,崔清斌.基于阶次跟踪和经验模态分解的滚动轴承包络解调分析[J].机械工程学报,2007,43(8):119-122. 被引量:37
  • 3沈国际,陶利民,徐永成.时域同步平均的相位误差累积效应研究[J].振动工程学报,2007,20(4):335-339. 被引量:17
  • 4Sameni R, Shamsollahi M B, Jutten C, et al. Filtering noisy ECG signals using the extended Kalman filter based on a modified dynamic ECG model [ C ]//Proceedings of the 32nd Annual International Conference on Computers in Cardiology. Lyon, France,2005 : 1017- 1020.
  • 5Sun Y, Chan K L, Krishnan S M. ECG signal conditioning by morphological filtering [ J ]. Computers in Biology and Medicine, 2002,32:465 -479.
  • 6MANUEL B V, WENG B W, BARNER K E. ECG signal denoising and baseline wander correction based on the empirical mode decomposition [ J]. Computers in Biology and Medicine, :2008,38 (1): 1-13.
  • 7STARCK J L, ELAD M, DONOHO D. Redundant mulitiscale transforms and their application for morphological component analysis [ J]. Advances in Imaging and Electron Physics, 2004, 132 (82) : 287 -348.
  • 8ABRIAL P, MOUDDEN Y, STARCK J L, et al. Morphological component analysis and inpainting on the sphere: application in physics and astrophysics [ J]. The Journal of Fourier Analysis and Application, 2007,13 ( 6 ) : 729-748.
  • 9ELAD M, STARCK J L, QUEERE P, et al. Simultaneous cartoon and texture image inpainting using morphological component analysis [ J ] , Appl Comput Harmon Anal, 2005,19:340-357.
  • 10Janardhana S, Jaya J, Sabareesaan K J, et al. Image Noise Removal Framework Based On Morphological Component Analysis [ C ]// International Conference' on Current Trends in Engineering and Technology, ICCTET' 13. Coimbatore, India,2013:63-66.

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部