期刊文献+

齿轮故障振动信号非高斯性特征趋势分析 被引量:4

Trend analysis of non-Gaussian characteristic for gear fault vibration signals
下载PDF
导出
摘要 以齿轮箱实测振动信号为对象,对齿轮点蚀故障发展过程深入研究。通过Gabor滤波仅保留振动信号的边带成分与随机成分;据双谱分析结果研究信号非线性、非高斯性变化,并提取非高斯性强度特征值;在故障趋势分析中利用"3σ准则"设定故障阈值。结果表明,非高斯性强度特征值对齿轮点蚀故障较敏感,可揭示故障发展变化趋势,有利于齿轮故障报警及寿命预测,对齿轮传动系统状态监测与故障诊断具有实际意义。 Gear pitting fault causes change in non-Gaussian components of vibration signals.This change can be quantitatively described by higher order spectral analysis.With measured vibration signals of a gearbox,the development process of gear pitting fault was investigated in depth.By Gabor filtering,the sideband components and the random components of vibration signals were retained.According to the bispectral analysis results,the change of nonlinear non-Gaussian characteristics of vibration signals was studied and the non-Gaussian intensity characteristic values were then extracted.The fault trend analysis was carried out and the fault threshold value was set in accordance with the ’3σcriterion’.The results show that the non-Gaussian intensity characteristic value is sensitive to gear pitting fault,and it can reveal the trend of fault development.It’s conducive to the failure alarm and life prediction of gears,and has practical significance to condition monitoring and fault diagnosis of gear transmission system.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第6期165-169,共5页 Journal of Vibration and Shock
基金 中央高校基本科研业务费项目(11QX48)
关键词 点蚀故障 GABOR滤波 非高斯性强度 趋势分析 3σ准则 pitting fault Gabor filtering non-Gaussian intensity trend analysis 3σcriterion
  • 相关文献

参考文献7

二级参考文献48

  • 1赵银娣,张良培,李平湘.一种方向Gabor滤波纹理分割算法[J].中国图象图形学报,2006,11(4):504-510. 被引量:26
  • 2舒坚,胡茂林.基于Markov随机场模型的纹理图像的缺陷检测[J].计算机技术与发展,2006,16(5):65-67. 被引量:2
  • 3CAMPISI P,MAIORANA E,NERI A.Video textures fractal modeling[J].Signal Processing Letters,2007,14(6):405-408.
  • 4MARELJA S.Mathematical description of the responses of simple cortical cells[J].J.Opt.Soc.Am.,1980,70:1297-1300.
  • 5BASCA C A,BRAD R.Texture segmentation:Gabor filter bank optimization using genetic algorithms[C].The International Conference on "Computer as a Tool",2007:331-336.
  • 6J.S.Smith, The local mean decomposition and its application to EEG perception data, Journal of the Royal Society Interface (2) (2005) 443-454.
  • 7Yanxue Wang, Zhengjia He, Yanyang Zi, A demodulation method based on local mean decomposition and its application in rub-impact fault diagnosis, Measurement Science & Technology 20 (2) (2009) 025704 (10 pages).
  • 8Yanxue Wang, Zhengjia He, Yanyang Zi, A Comparative Study on the Local Mean Decomposition and Empirical Mode Decomposition and Their Applications to Rotating Machinery Health Diagnosis, Journal of Vibration and Acoustics-Transactions of The ASME 132 (2) (2010) 021010 (10 pages).
  • 9Norden E.Huang, Zhaohua Wu, Steven R.Long, Kenneth C.Arnold, Xianyao Chen, Karin Blank, On instantaneous frequency, Advances in Adaptive Data Analysis 1 (2) (2009) 177-229.
  • 10S.Olhede, A.T.Walden, The Hilbert spectrum via wavelet projections, Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 460 (2044) (2004) 955-975.

共引文献86

同被引文献30

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部