期刊文献+

采用多方向插值融合的快速铁路货运图像修复

Fast Inpainting of Railway Freights Images Based on Multiple Direction Interpolation
下载PDF
导出
摘要 由于非目标前景的出现,高分辨率的线阵相机采集到的图像常因表面原始信息被遮挡而产生数据缺失.针对单张图像提出一种基于多方向插值融合的图像修复方法,并成功应用于铁路装载状态检测系统中,实现了监控图像中高压线的去除.在获得图像中待修复区域的位置后,将待修复区域分为平滑区和边缘区.对平滑区域,在3个不同角度方向上选择梯度变化最小方向上的邻域像素,用三次插值算法对待修复像素进行估计;对边缘区域,结合3个方向的三次插值结果进行数据融合,设计融合规则以获得更准确的插值结果.以HSI色彩空间代替RGB色彩空间对彩色图像进行修复.与BSCB、FMM等算法进行对比,表明所提出的算法能获得更好的修复效果,并能有效修复色彩复杂的图像,同时还降低了计算复杂度,提高了运行效率,使处理时间达到毫秒级,可满足实时处理要求. High resolution line-scan cameras produce images with missing information due to occlusion caused by foreign objects. In this paper, we propose a framework based on multiple direction interpolation for single image digital restoration to remove high tension wire (HTW) from images for railway loaded condition inspection (LCI) applications. The known region to be reconstructed is automatically segmented into smooth and edge sub-regions. The smooth regions are filled-in with bilineax interpolation based on the information in the neighborhood, which is the minimum among the gradient values in three directions. For the edge regions, the fill-in result is optimized using a data fusion method based on the information in three directions with bi-cubic interpolation. Inpainting is performed for each channel independently based on the HSI color space instead of RGB. Experimental results indicate that better restoration results can be obtained as compared with traditional Bertalmio-Sapiro-Caselles-Bellester (BSCB) and fast marching method (FMM) algorithms. The proposed algorithm can also effectively deal with inpainting of complex color images with high computational efficiency.
出处 《应用科学学报》 CAS CSCD 北大核心 2014年第2期191-198,共8页 Journal of Applied Sciences
基金 国家自然科学基金(No.61005018) 国家科技企业创新基金(No.09C26211200180) 天津市软件专项基金(No.2010[01-3])资助
关键词 图像修复 快速修复 数据融合 插值 铁路装载状态检测系统 image inpainting, image restoration, data fusion, interpolation, railway loaded condition inspection(RLCI)
  • 相关文献

参考文献19

  • 1TAUBER Z, LI Z N, DREW M S. Review and preview: disocclusion by inpainting for image-based rendering [Jl- IEEE Transactions on Systems, Man, and Cy- bernetics: Part C, 2007, 37(4): 527-540.
  • 2BERTALMIO M, SAPIRO G. Image inpainting [C]//Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New York, USA, 2000: 417-424.
  • 3CHAN T, SHEN J. Mathematical models for local deterministic inpaintings [R]. CAM 00-11, Image Processing Research Group, UCLA, 2000. ftp://ftp. math.ucla.edu/pub/camreport/cam00-11.ps.gz.
  • 4CHAN T, SHEN J. Non-texture inpainting by curvature-driven diffusions (CDD) [J]. CAM 00-35, Image Processing Research Group, UCLA, 2000. ftp://ftp.math.ucla.edu/pub/camreport/cam00-35. pdf.
  • 5TELEA A C. An image inpainting technique based on the fast marching method [J]. Journal of Graph- ics Tools, 2004, 9(1): 25-36.
  • 6CRIMINISI A, PEREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212.
  • 7FENG Tang, YING Yiting, WANG Jin. A novel texture synthesis based algorithm for object removal in pho- tographs [C]//Proceedings of 9th Asian Computing Science Conference, Thailand, 2004" 248-258.
  • 8BECK J, STEWART C, RADKE R J. LiDAR inpainting from a single image [C]//Proceedings on 12th Inter- national Conference on Computer Vision Workshops, 2009: 1441-1448.
  • 9党向盈,吴锡生,赵勇.基于边缘最大梯度的多方向优化插值算法[J].计算机应用研究,2007,24(9):317-320. 被引量:14
  • 10吴锡生,党向盈,赵勇.基于阈值控制的边缘自适应快速图像插值算法[J].计算机工程,2007,33(22):226-228. 被引量:12

二级参考文献16

  • 1陈小蔷,张俊,吴乐南.一种改进的边缘方向插值算法[J].中国图象图形学报(A辑),2004,9(6):684-687. 被引量:11
  • 2王立国,张晔,谷延锋.基于自适应边缘保持算法的图像插值[J].哈尔滨工业大学学报,2005,37(1):18-21. 被引量:7
  • 3王效灵,汪颖,陈涛,顾伟康.基于边缘检测的图像缩放算法[J].科技通报,2005,21(5):584-588. 被引量:6
  • 4朱立英,苏开娜.数字视频图像质量的客观评测[J].现代电视技术,2006(3):148-150. 被引量:8
  • 5CHEN Mei-juan,HUANG Chin-hui,LEE W I.A fast edge-oriented algorithm for image interpolation[J].Image and Vision Computing,2005(9):791-798.
  • 6LI X,ORCHARD M T.New edge-directed interpolation[J].IEEE Transactions on Image Processing,2001,10(10):1521-1527.
  • 7LI X,ORCHARD M.New edge directed interpolation[C]//Proc of IEEE Int Conf Image Processing.2001(2):311-314.
  • 8SHI H,WARD R.Canny edge based image expansion[C]//Proc of International Symposium on Circuits and Systems.2002:785-788.
  • 9ESKICIOGLN A M,FISHER P S.Image quality measures and their performance[J].IEEE Trans Comm,1995,43(12):2959-2965.
  • 10Pratt W K.Digital Image Processing[M].Toronto:Wiley,1978.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部