期刊文献+

图像分层匹配的HJ-1A/B CCD影像自动几何精校正技术与系统实现 被引量:9

Automatic geometric precise correction technology and system based on hierarchical image matching for HJ-1A/B CCD images
原文传递
导出
摘要 环境与灾害监测预报小卫星星座(环境一号卫星,HJ-1A/B)自发射以来,在环境监测、灾害评估、土地资源调查等领域发挥了重要的作用。但是HJ-1A/B卫星CCD图像的2级产品(HJ-1 CCD图像)几何精度低,实际应用中需要进行几何精校正。HJ-1 CCD图像具有宽覆盖、大视场角、几何变形复杂的特点,几何精校正难度大。针对该问题,本文提出了一个以Landsat TM全球拼接图像为基准,基于Forstner算子和模板匹配的分层配准方法。该方法使用分层匹配获得的大量高精度且分布均匀的控制点构建Delaunay三角网,有效地解决了HJ-1 CCD图像的几何精校正问题。在配准技术研究的基础上,研发了HJ-1 CCD图像几何精校正系统,系统具有全球HJ-1 CCD图像的自动批量处理能力。实验结果表明,本文提出的几何精校正方法精度高,实现了环境星图像的自动批量处理。 Two optical satellites HJ-1A and HJ-1B play an important role in natural disaster monitoring and risk assessment, environment monitoring, and other fields. However, the system geometric correction products of HJ-1 CCD have low geometric precision and need to be corrected. H J-1 CCD images have a larger aspect angle, a wider swath width and a larger image size. Furthermore, local geometric distortions are too complex in one scene. Thus, the geometric correction is difficult. In this paper, a hierarchical approach to automatic registration between HJ-1 CCD images and Landsat TM images based on the combination of Forstner operator and template matching is proposed firstly. The approach can obtain a large number of Control Points (CPs) with high precision and even distribution. These CPs are used to generate Delaunay TIN. Then, local distortions of HJ-1 images can be rectified with the Delaunay triangulated irregular network (Delaunay TIN). A geometric precise correction system is then imple- mented, thereby completing the automatic processing for global HJ-1 images. Experiments with six HJ-1 images demonstrate that the approach is efficient, accurate, and fully automatic.
出处 《遥感学报》 EI CSCD 北大核心 2014年第2期254-266,共13页 NATIONAL REMOTE SENSING BULLETIN
基金 国家高技术研究发展计划(863计划)(编号:2009AA122002,2012AA12A304)~~
关键词 环境一号卫星CCD图像 几何精校正 分层配准 DELAUNAY三角网 RANSAC HJ-1 CCD image, geometric precise correction, hierarchical registration, Delaunay TIN, RANSAC
  • 相关文献

参考文献15

  • 1Andronache A, Cattin P and Szekely G. 2005. Adaptive subdivision for hierarchical non-rigid registration of multi-modal images using mutual information // Medical Image Computing and Computer- Assisted Intervention (MICCAI), Berlin, Heidelberg: Springer: 976- 983 [ DOI: 10.1007/11566489 _120].
  • 2Andronache A, Von Siebenthal M, Sz6kely G and Cattin P. 2008. Non- rigid registration of multi-modal images using both mutual informa- tion and cross-correlation. Medical Image Analysis, 12(1 ): 3- 15 DOI: 10.1016/j.media2007,06.005 ].
  • 3Bai G X. 2009. China environmental and disaster monitoring and fore- casting small satellite-H J- 1A/B. Aerospace China, 5: 10-15.
  • 4Bay H, Ess A, Tuytelaars T and Van Gool L. 2008. Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110 (3): 346-359 [ DOI: 10.1016/j.cviu2007.09.014].
  • 5Devereux B J, Fuller R M, Carter k and Parsell R J. 1990. Geometric correction of airborne scanner imagery by matching Delaunay trian- gles. International Journal of Remote Sensing, 11 (12): 2237-2251 [ DOI: 10.1080/01431169008955172 ].
  • 6Forstner W and Gtilch E. 1987. A fast operator for detection and precise location of distinct points, comers and centres of circular features// Proceedings of the lntercommission Conference on Fast Processing of Photogrammetric Data. Interlaken, Switzerland: [ s.n.] : 281-305.
  • 7Hu C M and Tang P. 2011. HJ-1A/B CCD IMAGERY geometric distor- tions and precise geometric correction accuracy analysis//Proceed- ings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Vancouver, BC: IEEE: 4050-4053 [ DOI: 10.1109/IGARSS2011.6050121 ].
  • 8Ke Y and Sukthankar R. 2004. PCA-SIFT: A more distinctive representa- tion for local image descriptors // Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Rec- ognition. Washington, DC: IEEE Computer Society Press: 506-513 [DOI: 10.1109/CVPR.2004.1315206].
  • 9Li B, Xiao R, Li Z W, Cai R, Lu B L and Zhang L. 2011. Rank-SIFT: Learning to Rank Repeatable Local Interest Points//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE Computer Society Press: 1737-1744 [ DOI: 10. 1109/CVPR2011.5995461 ].
  • 10Likar B and Pemus F. 2001. A hierarchical approach to elastic registration based on mutual information. Image and and Vision Compute, 190/2): 33-44 [ DO1: 10.1016/S0262-8856(00)00053-6].

同被引文献115

引证文献9

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部